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Associative memory storing an extensive number of patterns based on a network of oscillators
with distributed natural frequencies in the presence of external white noise
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We study associative memory based on temporal coding in which successful retrieval is realized as an
entrainment in a network of simple phase oscillators with distributed natural frequencies under the influence of
white noise. The memory patterns are assumed to be given by uniformly distributed random numiifiers on
2m) so that the patterns encode the phase differences of the oscillators. To derive the macroscopic order
parameter equations for the network with an extensive number of stored patterns, we introduce an effective
transfer function by assuming a fixed-point equation of the form of the Thouless-Anderson-Palmer equation,
which describes the time-averaged output as a function of the effective time-averaged local field. Properties of
the networks associated with synchronization phenomena for a discrete symmetric natural frequency distribu-
tion with three frequency components are studied based on the order parameter equations, and are shown to be
in good agreement with the results of numerical simulations. Two types of retrieval states are found to occur
with respect to the degree of synchronization, when the size of the width of the natural frequency distribution
is changed.

PACS numbe(s): 02.50-r, 05.45.Xt, 87.18.Sn, 75.10.Nr

I. INTRODUCTION Instead of working with the concept of rate coding based
on the idea that neuronal information is represented by mean
Recently a population of neurons in the cat visual cortexiring rate of a single neuron, one may be concerned with the
has been reported to exhibit synchronized firings in a stimuconcept of temporal coding, when considering that spatio-
lus dependent mannét,2]. The occurrence of correlations temporal patterns of neuronal firings will make information
in firing times of neurons seems to be a ubiquitous phenomcarried by a population of neurons much richer than spatial
enon in real nervous systems. The role of such synchronizeR@tterns alone. A spiking neuron is considered to be one of
firings for information processing in the brain has been at{h€ candidates for implementation of temporal codiag—
tracting growing interest of researchers, and several authoRs)- The time evolution of membrane potential that is gener-

have suggested neural network models based on the conc@[?d. in response to an i_njected synaptic e]ectric current of a
of temporal coding, where information of a neuron is repre- piking neuron is described by such nonlinear dynamics as

sented by its firing times. Indeed, to explain the experiment odgkin-Huxley equatio34], FitzHugh-Nagumo equation

findings that visual information of an external object is pro- 35,36, or the equation of an integrated-and-fire neuron.
gs . - : : ) P! Spiking neurons in a network are generally supposed to in-
cessed with being divided into several pieces of information

| h 6 h d that th hroni dteract with each other via pulses generated in the firing
several authorg3—6] have suggested that the synchronizedg,ents occurring in the pre-synaptic neuron. We have shown

firings of neurons may serve as a linker for those pieces ofe\ioysly that even in the presence of time delays in trans-
information. _ o o mission of the pulses an associative memory based on a net-
The problem of investigating how an associative memoryyork of spiking neurons can be realized by assuming a
is realized in real nervous systems as well as of constructingimme Hebb-type learning rule alone, and that the memory
biologically relevant models is of central concern of neuro-retrieval accompanies synchronized firings of neurons. The
scientists. Since the establishment of systematic theories @fynamics of such associative memory was analyzed by
associative memory for networks with an energy functionmeans of sublattice method in our previous pdj3i.
that is ensured by assuming symmetric synaptic couplings In the previous analysig7] we assumed that every neu-
[7-16], several attempts have been made to make models asn shares identical characteristics to exhibit the same reac-
biologically plausible as possib[@7—-19. Previously we in-  tion in response to the same injected current. In real nervous
vestigated the effects of asymmetric coupling0] for systems, however, neurons in a network may have their own
memorizing presynaptic and post-synaptic activities, whichindividual characteristics.
are incorporated into the standard symmetric Hebb learning The problem of whether temporal coding functions ro-
rule [21], by studying networks of analog neurof2,23, bustly in the presence of certain heterogeneities of neurons
whose continuous-time dynamics involves a positive-valuedvill be of particular interest. For the purpose of investigating
transfer function representing the mean firing rates of a neusuch a problem for the phenomenon of synchronized oscilla-
ron as a function of membrane potential. tions in associative memory neural networks, we consider it
appropriate to deal with simple models of coupled oscillators
with distributed natural frequencies and external noise. It is
*Electronic address: myosioka@mikau.ap.titech.ac.jp well known that, under certain conditions, a population of
TElectronic address: mshiino@ap.titech.ac.jp oscillators with distributed natural frequencies is allowed to

1063-651X/2000/6(6)/473213)/$15.00 PRE 61 4732 ©2000 The American Physical Society



PRE 61 ASSOCIATIVE MEMORY STORING AN EXTENSIVE.. .. 4733

get partially entrained in such a way that oscillators with apute the free energy of the network without a distribution of
natural frequency near the central frequency become to oswatural frequencies to derive the TAP equation by following
cillate synchronously at identical frequency as a result othe method of Plefk@50] and Nakanish[51]. Then we as-
cooperative interactions88—40. sume that the TAP-like equation also exists with the Onsager
Kuramoto[38] showed that the dynamics of this kind of reaction term remaining the same even for networks with a
network of oscillators with sufficiently weak interactions can distribution of natural frequencies, and that such a TAP-like
be reduced to a simple phase dynamics. Supposing that negduation defines an effective transfer function to which the

rons in a network are treated as phase oscillators, associative-SNA is applicable to obtain the order parameter equa-

memory has been shown to be realized under a simple learfONS: , _
The present paper is organized as follows. In Sec. Il, we

ing rule of the Hebb-type either in the case of a finite number ; ;
of stored patterng41,39 or in the case with a single natural Ntroduce a neural network of simple phase oscillators and
frequency[42,43. Satisfactory analysis of the case with g describe how the n_etwork funcnons as an associative
distribution of natural frequency and extensively manymemory base_d ona S|mplg learning rple of th? Hebb-type. In
stored patterns has been far less conducted. Quite recent ?C'.”I’ we give a theoretical gnaly3|s to. d'erlve the macro-
we have reported the study of a deterministic phase oscillat copic order parameter equations plescnblng the long time
network with a distribution of natural frequencies where an?€havior of the system. On the basis of the order parameter

extensive number of binary pattereis1) are stored with use equations, in Sec. |\./ we investigate properties of memory
of the Hebb learning rulg44]. retrieval accompanying synchronization in the networks by

aqlssuming a discrete symmetric natural frequency distribution

The main purpose of the present study is the theoretic ,
purp P y ith three frequency components. Results of numerical

analysis of associative memory based on temporal coding; X . :
with use of networks of phase oscillators in the more generaymulations are presented showing good agreement with
case where the number of stored patterns that are given tw_ose of theoretical analysis. In Sec. V, comparing our work
uniformly distributed random numbers 68, 2) is exten- ith tho;e of other researchers conducted previously, we
sive, natural frequencies of the oscillators are distributed acsUmmarize the results of the present study.
cording to a certain distribution function, and furthermore
external white noise is added to the system. Il. NEURAL NETWORKS OF PHASE OSCILLATORS

While one can analyze a phase oscillator network with a ~ WITH DISTRIBUTED NATURAL FREQUENCIES
single natural freqyency by'means of the repI!ca method that The system under consideration is a networkNophase
makes full use of its associated energy functlon, one Canr,‘%scillators subjected to external white noise, whose dynam-
resort any more to the standard method of statistical physm@S is expressed as
based on the existence of an energy function in the case o
networks with a distribution of natural frequencies. N

One can, however, use the self-consistent signal-to-noise ¢i: wi—z Jij Sin( i — &b — Bij) + mi(t), (1)
analysis (SCSNA [45,46,22,23,3F to deal with general J#i
cases without energy functions. To apply the SCSNA it is
necessary to know fixed-point equations describing the equiVnereé ¢i and w; represent the phase and the natural fre-
librium states of the network. When considering such equadU€ncy of oscillatori, respectively.;; and J;; represent a
tions in stochastic systems, we may take advantage of thef"t@in phase shift and the strength of coupling between os-
concept of the Thouless-Anderson-Palnf&AP) equation ~Ccillator i andj, respectively. The Gaussian white noiggt)
[47,48. is assumed to satisfy(7;(t))=0 and (#;(t)5;(t"))

The Thouless-Anderson-Palm@rAP) equation is known =2D 4, 5(t_t')-_ _
to exist for the Sherington-KirkpatrickSK) model of spin When 0;=0(i=1,... N), c;=J;exp(g;) satisfy c;
glasses[48-5( and the Hopfield model of an Ising spin = Cji With * denoting complex conjugation adg take real
neural networkg8,48,51, and to represent a functional re- values, the systerl) has the energy function:
lationship between the thermal or time average of each spin 1
in equilibrium and its corresponding effective local field that - _ = - 4
involves the so-called Onsager reaction tgd8]. Useful- H4H 2;; Jj cos =y Byy). @
ness of the TAP equation in deriving the order parameter
equations of associative memory networks is attributed to th&hen one has an equilibrium probability distributio{ ¢;})
fact that the resulting equations of the replica calculations byroportional to exp-H({¢;})/D]. In the case oD =0, the
Amit et al. is recovered by the result of application of the function(2) becomes a Lyapunov function of the system and
SCSNA to the TAP equatiof¥%6], where the Onsager reac- hence the state of the system eventually settles into a certain
tion term is canceled exactly by the appearance of the renofixed point attractor after a long time.
malized output term of the SCSN6]. We note that the In the present study, we assume natural frequencies to be
TAP equation of the naive mean field model with the inter-distributed accordingly to an even distribution function
actions given by the Hebb learning rule defines to an analog(w)=9g(— w) so that the average of natural frequencies be-
network equation with the transfer function tangh() [46]. come zero without loss of generality. To stdPequenched

We first evaluate an analogue of the TAP equation of theandom patterng/“(i=1, ... N,u=1,... P) chosen from
naive mean-field type for our model with a distribution of the uniform distribution on the intervgD, 27), we assume
natural frequencies by dealing with the Fokker-Planck equathe Hebb type learning rule, and set the paramgigrand
tion. In order to obtain the Onsager reaction term we comyeal valuedJ;; such that
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SEL g i#] 12} imagines
Cij:Jij eXF(i,Bij): N “#=1515) ' (3) | imaginary ]
0 i=j 5 087
;“—_’ L
where&f=exp(6{). This definition of couplings gives net- Tg 0.4 |
works the following properties: - 0 i
(1) In successful retrieval an entrainment occurs, where |
synchronized oscillators satist; — ¢;~ 6 — 6/* with a tar- 04l ]
get patternu recalled.(Note that if ¢; is the solution of 300 340 380 420 460 500
dynamics(1), uniformly shifted phasep;= ¢;+c also be- t
comes its solution. What matters is not the phase itself but o
their differences, — ¢; .) ® i real — |
(2) In the case of unsuccessful retrieval, all the oscillators 1.2 I imaginary - ]
fail to synchronize, running at their own natural frequencies. 058
To measure the distance between the patierand the fa—f_) '
state of the system, we introduce the overlap for pattern El 04l
° I
1 u 0 p
m(t) =5 2 €z, (4) ,
' 04t
where we denote'#(® by z(t). Then by use of the local 800 340 380 420 460 500
field
FIG. 1. The typical time evolution of the local fields observed in
numerical simulations wittN=_8000, «=0.02,D=0. Natural fre-
(1) = L7 (1) = Am(t) — az: ' :
hi(t) Jz, C'lzl(t) % §mi(t) —az;, (5 guencies are chosen so as to okl@y a Gaussian distribution
g(w)=exp(w?20?)\27? with ¢=0.3 and (b) g(w)
the dynamicg1) is rewritten as =0.155(w+1.4)+ 0.78(w) + 0.155(w —1.4).

b= w;j—Re{h;(t)}sing;+ Im{h;(t)}cose; + 7;(t), (6)  number of patterns, can be applied to obtain the order param-

. o eter equations in the limi— oo.
where @ denotes the loading rate/N. From Eq.(6) it is

easy to see that the learning rul®) indeed realizes the . . .
above mentioned properties if the number of stored patternsA. Effective transfer function based on time-averaged local

is finite (¢=0) andw;=0 (i=1,... N). The memory re- field and the TAP-like equation
trieval accompanying synchronization can also occurdor If ;=0 (i=1,...N)andD=0, the state of the network
>0 even in the presence of a distribution of natural frequeneyentually settles into an equilibrium state given by a fixed-
cies. point attractor owing to the existence of the Lyapunov func-
tion (2), and then the local fields do not fluctuate in time.
Ill. MACROSCOPIC ORDER PARAMETER EQUATIONS Even in the presence of external white noig2#0), the

Behaviors of associative memory networks depend CruI_ocaI fields also get fixed in time after a long time, provided
. "y P a=P/N=0. When the local fields are fixed over the time
cially on the nature of the local fields or the neurons of

oscillators, because the updating rule for the time evolutio change due to the law of large numbers, theoretical treatment
P b g ru . ; 'becomes simple because one can reduce the many body
of the system is based on the local fields as is seen i@kq.

) . ; ) roblem to a single-body problem.
o e o oo 1 he more eneral case whese-0 ol -
p yp ' . X uencies are distributed, the local fields may fluctuate even
output state of a neuron and the corresponding local field

) . o : ith a large number of oscillators as can be shown in the

becomes essential for determining equilibrium properties o . : S o .
o . . numerical simulation illustrated in Fig. 1. The fluctuations
the networks. Such a relation is naturally introduced in the

S seem to be aperiodic and rigorous analysis of such fluctua-
case of deterministic analog networks where neurons a

characterized by transfer functions describing the in utr—ﬁons Is quite difficult. To deal with this situation we are
output relation y 9 PU%orced to resort to a certain approximation by confining our-

For such stochastic systent®) as Ising spin networks, selves only to the near equilibrium behavior of the system:

equilibrium fixed-point equations called the TAP equationsWe replace the time-dependent local fields by their time-
averaged ones

are known to exist as expressing the relation between time
average of each output of a neuron and its corresponding _ _

effective local fields involving the so-called Onsager reaction hj(t)~h;= E CijZj, (7)

term that is proportional to the time-averaged output. Once 7

the TAP-like equation level description is available, the SC-

SNA, in which one computes the variance of the cross-talkwhere the overbar represents the time average at near equi-
noises in the local field as a result of storing an extensivdibrium.
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Once we apply this approximation, we are allowed to treat
each interconnected oscillator as an element obeying the dy- r

namics of one degree

¢i=w;— Re(h;)sing;+Im(h;)cose; + 7;(t),  (8)

which is expected to describe the behavior of the oscillator
near equilibrium. It turns out that the time avera_xgat equi-
librium can be expressed as a function ®f and h;: z
= f(w; ,h_i,hi*). We call it the transfer function in the case of

network of analog neurons. It is easy to show that the trans-

fer function f(w,h,h*) satisfies
flw,re'? (re'?)* =€ ’f(w,r,r).

9

Hence it suffices to calculatef(w,r,r) to obtain
flo,re'’,(red?)*]. In the absence of white nois®&0), we

can easily obtain the transfer function for real-valued Iocalf( ©

field r [38]:
wo<—r

[ (o o1,

1
f(w,r,r)=-1 F(iw+\/r2—w2), —r<w<r (10

i
—(w—Jw’—r?), r<w.
r

\

In deriving Eq.(10) in the case of-r<w<r we usede¢
=0 together withdg/d¢<0. In the case ofw<—r or r
<w we computed the time average of €xf(t)] over the
period T, of the periodic oscillations o#:

27Tei¢

[

_ 1 (T . 09
f(w,r,r)—_l_O fo exn[uj)(t)]dt——zw1

—d¢
0 ¢
2 @¢
fo w—rsing
1
w—rsing

d¢

11

2m

)

de

In Fig. 2, we illustrate the shape of the transfer function

f(w,h,h*) that is obtained from Eqg9) and (10).
In the presence of white nois®¢0), from the Langevin
equation(8) we obtain the Fokker-Planck equation

_ J _ _
P o)== S {[w—ReN)sing-+Im(h)cosé]p)

&Zp
+ —_—
Daqﬁz’

(12)
where p(qﬁ,t;w,H) is the probability distribution of phase
¢e[0,2r] at time t, and periodic boundary conditions

p(0t;w,h)=p(2m,t;w,h), dp(0t; w,h)/d¢
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0/

Re (h)

FIG. 2. Graphical representation of the effective transfer func-
tion f(w,h,h*) in the case withD=0 and w>0. The output
.h,h*) is represented by a vector at the positfoon the com-
plex plane. In the region, whefE|< 1, oscillators get synchronized
with |f(w,h,h*)|=1, while inside the circle oscillators get desyn-
chronized with|f(w,h,h*)|<1. In the case ofa<0 the rotational
direction of the flow pattern gets reversed owing to the property
f(— w,h,h*)={f(w,h* ,h)}*.

=dp(27-r,t;w,ﬁ)/d¢> are imposed. Since we are concerned
with the probability distributiorp.(¢;o,r) attained after a
long time, we sep(¢,t;w,r)=0 to obtain[39,41]]

1(¢)
2m
I(¢)d¢

)

Peq Dr@,1) = (13

with

g exp{—we—Tcog e+ ¢)}de,

(14)

() =expT cose) f

0

where® = w/D andT=r/D. Noting the ergodic property on

the Fokker-Planck equatiofil2), which holds whenh is
viewed as a given parameter, we obtain the time average of
by computing the average over the equilibrium distribution

Ped Prw,T)
fzwewl(d»dgb
0
2m

)

I(¢)d¢

f(w,r,r)= (15

The transfer function we have obtained here can be con-
sidered to be an analogue of the so called TAP equation by
the naive mean field model, because the time average of the
outputz is represented as a function of time-averaged local

fieldsh. We note, however, that the genuine TAP equation,
which is defined for systems with an energy function, should
describe the functional relation between the time averaged
output and the effective local field that differs in general

from the time-averaged one. The difference between the two
types of local fields is known to be the Onsager reaction term
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in the theory of random spin systems. We assume that thi#en one has to employ the method of SCSNA. The crux of

TAP-like equation may hold even for the present systenthe SCSNA is the evaluation of the variance of cross-talk

without an energy function, and suppose it to be given by theoise that interferes occurrence of retrieval state.

following equations According to the prescription of the SCSNR3], the
local field (20) is assumed to be in the form:

z="f(w; /" A, (16)
A
_ _ h=mi+ — peit gh g o SCSNAG 4 TAPG.
hiTAP: hi + ‘yTAPZi I N le ; gl fj ] 7 | 7 |
(22
TAP, TAP,
= ;I Cijzj+ 2 gmi—azity wheres!, whose explicit expression is given later, is a quan-
tity that is very close tcs" and has a negligible correlation in
(17 the limitN—o, and\ and ySCSNAare to be self-consistently
In the case withw;=0 (i= ..N), by evaluating the free determined in the course of analysis.
energy of the system, we can derive an explicit expression of Defining h;=m*+ (MN)Z 213 6064 s, Eq. (16)
the coefficienty™P taking the form(see Appendix A reads
AP (1-q)/2D 5= floj b+ O™, (hi+yO™s)*], (293
Yo T TY T a—q2D’ (18)
q where ,yTOTAL — ,ySCSNA+ ,yTAP.
Where Considering a general case wigl®™+0, we solve Eq.

(23) for s;, to obtain the renormalized outpus;
=T(w; ,hi,h¥). Performing a Taylor expansion of

19 ~ ~ ~ O
19 f(w;,hi,hi) about b/ ,h#"), we have

Z|H

et

It will, however, be difficult to rigorously derive an expres- Pri
sion of y™F for the general case with a natural frequency — sj=s/+ —
distribution. Thus we are led to make an assumption that the dh
legitimate expression(18) for the case withw;=0 (i P
=1,... N) can naturally be extended to the general case. A L\

x(—gi ere s,”) (24

Describing the desire¢™P requires the introduction of the
order parameteun that appears in the SCSNA.
. . . ) with
B. Self-consistent signal-to-noise analysis
We consider the case withm!=0(1) and m* Fl=m l D 2
I p §| g] ’ ( 5)
=O(1YN) (w=2, ... P), where we choose pattern 1 as N vELu jFI
the target. Assuming, without loss of generality, tﬁét: 1 B .
for all i andm? is real owing to the rotational symmetry, the st=f(w;,h#,h). (26)

local field Eq.(17) is rewritten in the form:
Substituting Eq(24) into Eq. (20) and comparing the result

1 with Eg. (22) (see Appendix B for detailsve obtain
h=mis =3 S s o™, (20 o (22) (see App ]
pu>1 j#I
A
ml+_ ep® S,u+ SCSNAS+ TAP
where we have uses], h;, andm* to represent respectively N ;LZI ]E#I e I 4
z;, h,, andm* for brevity. 14 un
When we consider the case with a finite number of stored —ml+ > giugju* s+ auls;+y™Ps
patterns, the analysis is straightforward since we already N =107
know the form of the transfer functiond0) (D=0) and 27)
(15) (D+#0). Sincey™P=0 andh;=m? in this case, we
have in the limitN— oo where
l_iz 1* f 1 1 (21) 1 (9
m =y i & s—(f(w,m-,m)),,, :NZ = _ (28)
J

(h. .h*)
where (-}, = [d(w)---dw. Solving this equation numeri- o
cally, we evaluate the size of the overlap as a function ofSince this equation holds for every sitex and yS“SNA are

various parameters includirig. self-consistently determined as
In the case of an extensive number of stored pattesns (
>0), however, the cross-talk noigthe second term of Eq. N= 1 (29)

(20)] in the local fields becomes to an appreciable extent, 1-u
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1 .
SCSNA_ a%' (30 =
u 0.8 |
The variance of  renormalized  noise N; o 06 I S A
=()\/N)2M>121¢i§{‘§f*sﬁ in the right-hand side of Eq. %
~ ~ >
(22) can be evaluated by noting that R8(and Im(\;) dis- ® 0.4
tribute over sites obeying an identical Gaussian distribution 02
independently and the site average|isf|?> can be replaced < $ets
by the pattern average: one has ol iz S.%d .
6 04 08 12 18 2

1 ~ ~ W1
52 [N 2=([Rif?)=aln|a. (3 |
' FIG. 3. w, dependence of the overlap obtained from the present
- analysis is plotted together with the results of numerical simulations
To represent the noise &&= \/ar (x;+iy;)/2, wherex; and  with N=4000 for the case witlr=0.02,a=0.7,D =0. Since the-
y; are real and obey a normal Gaussian, we define oretical analysis is based on taking a time average of physical quan-
tities of interest, the results of simulation are displayed in terms of

time-averaged quantitiden”|=|(1/N)3; £z

2q
r=2|)\|2qzw. (32)

Summarizing Eqs(4), (19), (22), (23), (28), (29), (30), u=(1-q)/D. (42)

and (32), we have a set of macroscopic order parametefrhen, from Eq.(18), we have

equations
-~ -~ TAP_ u
s=flw,h+yTs, (h+ yTOTAs)*], (33 yU=—aer— (43)
_ or L . .
= g(xﬂy), (34) which immediately reconfirms
yTOTAL SCSNAL \ TAP_ (44)
TOTAL _ SCSNA+ TAP, 35
4 4 4 39 Now we observe thain the case withw;=0 (i, ... ,N)
o the Onsager reaction term™PS; cancels out with the term
m=({f(w,h.h"))), (36) ySCSNAS that emerges as a result of the evaluation of the
R T a2 correlation between the state of oscillators and the stored
a={([f(w,h,h*)[%)), (37 patterns Thenwe assume Eq. (43) to hold generally so that
R yTOTAL=0. As will be shown later the results obtained based
Varu=(((x=iy)f(w,hh*))), (38)  on this assumption show good agreement with the results of
) numerical simulations.
= (39)
(1-u) IV. BEHAVIORS OF THE NETWORK WITH A DISCRETE
NATURAL FREQUENCY DISTRIBUTION
u
YOV o 11—y’ (40) For the sake of simplicity we focus on the behavior of the

oscillator network with a discrete natural frequency distribu-
where ((--+) represents((---),)i= (127 g(w)exd—(¢  fion g(w)
+y?)/2]---dwdxdy. Detailed derivation of Eqs(38) and 1 1
(39) is given in Appendix C. g(w)= -4 S(w+wy)+adlw)+ i Sw—w,),

To discuss the generalized expression $0f” for the 2 2

case with a distribution of natural frequencies, we consider (45
for the moment the case with;=0 (i=1,... N), where
Eq. (18) exactly holds. In this case it turns out that®TA-
=0 by a rough argument given below. Note thgtoTA-
=0 impliesf(w,h,h*)=f(w,h,h*), and that the effective
transfer function(15) becomes

wherea represents the ratio of the number of oscillators with
;=0 to the total number of oscillatois.

A. Appearance of a window for breakdown of the retrieval
states

J§™ cos¢ exp(T cose)de To roughly sketch the effects of the natural frequency
3,7 exp(T cos¢)ded (42) distribution with three frequency components, we investigate
the behavior of the overlap with change ©f in the case of
Using Egs.(9) and(41) and performing the average over the D=0. In Fig. 3, we givew; dependence of the overlap cal-
Gaussian distribution with unit variance for E(8), we culated from Eqs.33)—(40) and the result of numerical
obtain simulations withN=4000 for the case withv=0.02, a

f(Or,r)=
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L q ]
12 u 0.08 |
] 1 b
©
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04 1 0.01
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[V
FIG. 5. w;— a phase diagram representing the behavior of stor-
b) 14 T T age capacities for various valuesafn the case oD =0.
- r m — T
L q 1 I . . .
1.2 u e ministic networks withD =0. In the absence of white noise
E) 1 -\ 1 (D=0), one can in general divide the oscillators with
% 0.8 | | #0 into two groups of synchronized and desynchronized
5 . oscillators according to the criterion of whether the phase
£ 06 .. ] velocity of an oscillation vanishes or not. Noting E&6)
04t 1 and the form of effective transfer function with=0 [Eq.
02 ) (10)] illustrated in Fig. 2, we find that desynchronized oscil-
lators do not contribute to the value of overlap though
0 ———————— they contribute to the value of other order parameters such as
0 0.4 0.8 1.2 1.6 2 o . .
o g and u. This is because we are concerned with the time

averaged behavior of the local fields, where the time-
FIG. 4. (8 w;-dependences of the order parameters) andu  gyeraged phase difference between the desynchronized oscil-
obtained from Eqstl), (2), and(3) are displayed in the case with |at0rs with natural frequencias and — w should ber in the
a=0.7 anda=0. (b) same aqa) for the case witha=0.02. The absence of white noigée., f(— w,h,h*)=—f(w,h,h*) for

gap separating two types of retrieval stafe largew, regimes | 1 | the case with white noise)(#0), however, the
and smallw, regimes implies the disappearance of retrieval states.phase of each oscillator with,#0 evolves with a certain

=0.7, andD=0. Good agreement between the theory andion-zero time-averaged phase velocity, since the action of
numerical simulations implies the validity of the presentwhite noise prevents any oscillators from settling into fixed
analysis. points. Hence, it becomes impossible to distinguish between

As is expected, an entrainment indeed occurs in the cagbe synchronized and desynchronized oscillators anymore.
of small w,(w,=0.5), where one has successful retrievalNevertheless a finite value of the overlap is realized because
accompanying a large size of overlap. Even in the case dbf the existence of the equilibrium probability distribution on
large w;(1.0= w;) successful retrieval can be realized with [0, 277) that is achieved after a long time wi# 0.
small size of overlap, since natural frequencyadf oscilla- In Fig. 6 we display the behavior of the overlap as a
tors remains 0. function of the noise intensit) obtained by the theoretical

_To give a qualitative explanation for the occurrence of agnalysis and numerical simulations. As expected, the size of
window for breakdown of the retrieval states, we considefhe overlap decreases as the noise intensity increases until
the case withw=0 for the moment. We can easily obtain the the system undergoes a discontinuous transition at a critical
values of order parameters, g andu as functions ofw;
(see Appendix [pas shown in Fig. 4. We see a phase tran-
sition to occur atw;~0.7, andu is seen to increase as;
approaches»{:u—1 asw;— j, while g=1 for w;<w$
owing to the entrainment.

Even whena#0, such an enhancement ofaround w§
remains unchanged as can be seen in Fig. 4. Notind3j.
we can easily understand the noise varianeé2= aq/(1
—u)? may be enhanced accordingly in the interval=0ds,
=<1.0, where retrieval states disappears.

In Fig. 5, we draw thew— « phase diagram to show the
behavior of the storage capacity as a functionegf. The
window observed in Fig. 3 turns to arise from the valley of
a(wq) curves.

overlap

0.4

FIG. 6. D dependence of the overlam obtained from the
present analysis is plotted together with the results of numerical

Behaviors of synchronization in the networks of coupledsimulations withN=4000 in the case witla=0.7, «=0.01, w,
oscillators with white noise differ from those of the deter- =0.3.

B. Effect of white noise
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0.04 - : - the macroscopic order parameter equations, based on which
' : the properties of associative memory of the network have
been studied.

Assuming a discrete symmetric natural frequency distri-
bution with three frequency components for the sake of sim-
plicity, we have presented the phase diagram showing the
behavior of storage capacity as a function of the parameter
w4 representing the width of the natural frequency distribu-
tion. In the case oD =0 the storage capacity, has been
found to exhibit non-monotonic behavior as is varied and
to attain a minimum at a certaim,. As a result of the
occurrence of the valley in the;— «. curve the breakdown

FIG. 7. Same as in Fig. 5 for various valuesidin the case of  of the retrieval state with fixedv occurs for intermediate
a=0.7. values of w;. When noise is present such a behavior has

been found to be somewhat relaxed, and only for small
noise intensityD®, above which a disordered state with  yalues of the noise intensityp the phenomenon of the
=0 is realized. Good agreement between the two resultgreakdown of the retrieval state can be observed. Our ana-

implies the validity of our treatment based on the time averyytica| result has shown excellent agreement with the results
aged local fields together with the assumption that the TAPg¢ numerical simulations.

like equation also holds in the case with a distribution of . rasults show that associative memory based on tem-

natlurz'azl_fre(?quenme.s. B h di that " poral coding can be realized in the network of simple phase
nmg. 7, we givew, ~a phase-diagram that represents o 4iqrs even in the presence of not only a distribution of

thel stora;:gelcapacltyfr#]otted as z(a)&tun(t:rt:oniqf for varloust natural frequencies but also external white noise. The result
vajues olb. In most oT the region 0w, , the storage capacity temporal coding is robust against the existence of envi-

a; decreases as the noise intensity increases. We see that hmental noise is remarkable. Memory retrieval occurs in

D smalle_r tht;emha pertainhcritir(]:;{bo, a_C("’l) emibitfs noDn- such a way that the oscillators undergo synchronized mo-
monotonic  behavior with change im,, while for tions with the phase differencg; — ¢; between any two of

>D0’ac(“’lf) is m.ogotor}icallﬁ debcreaksciing W"&;l'hThe oc- the oscillators andj setting into, for long times, the differ-
currence of a window for the breakdown of the retrieva ence ¥~ 8¢ of the memory patterpu. In our model6* is

states with f'xidx for”D<D0tur(;1$bmt|:]to be attrlbutted_tott)h(ra] chosen from uniformly distributed random numbers[0n
appearance of a valley caused by the non-monotonic behay:, * tnq regyitant behavior, however, is qualitatively the

lor of the ac(w,) curve as in the case @=0 (Fig. 3. same as that for our previous worl £ 0) [44] on the spe-
cial case where?/=0 or 7w and henceJ;; is given by the
well-known formJ;; = (1N)Z ,&°§f" with &f'==1. A char-

We have investigated properties of an associative memorgcteristic feature of memory retrieval accompanying syn-
model of oscillator neural networks based on simple phasehronization is that, in contrast to networks with fixed point
oscillators, where the influence of white noise together withtype attractors, each neuron exhibits oscillations in the local
a natural frequency distribution is considered in the case ofield or the membrane potential that are easily detected by
an extensive number of stored patterns. In the presence éther neurons in a certain network to determine whether
white noise every oscillator as well as its local field under-memory retrieval is successful or not. Also worth noting is
goes fluctuating motions even in the stationary state after the appearance of two types of retrieval states with respect to
long time. To deal with such a situation we have taken arthe degree of synchronization: a high degree of synchroniza-
approach based on the concept of the TAP-like equation. T#on that occurs for smalb, with overlapmlarge and a low
approximately derive the TAP-like equation for the systemdegree of synchronization that occurs for large with m
without an energy function we have taken the time averagemall.
for the fluctuating local field of each oscillator neuron to  The fundamental assumption we have used in the present
make it constant in time. On the basis of the time-average@tudy is the existence of the TAP-like equatioii$) and
local field we have dealt with the single-body Fokker-Planck(17) for our system together with the expressionydf® [Eq.
equation to obtain the time averaged outputs of the oscillaé43)]. In the case ofw;=0 (i=1,... N) there occurs no
tors in the stationary state, from which we have evaluated thproblem because the genuine TAP equation exists as has
effective transfer function. The relation between the time-been shown. In this case, we have found th4t” [Eq. (18)]
averaged output and the local fields involving such a transfeis exactly canceled out byS®SN4 as in the case of the
function can be viewed as an analogue of the naive TAP-likaetwork of AGS, to yieldy™©™-=0 as well as the order
equation without considering the so called Onsager reactioparameter equations that recover the ones by Cé2k who
term. We have supposed the proper form of TAP-like equaanalyzedQ-state spin model including the case wifh—
tion to be given by appropriately adjusting the Onsager refor arbitrary temperatures by means of the replica symmetric
action term such that setting;=0 (i=1, ... N) naturally = approximation.
leads to the legitimate TAP equation, which we have ob- In the case with distributed natural frequencies, to esti-
tained from the evaluation of the Gibbs free energy. Apply-mate the form of the effective transfer function of the TAP-
ing the SCSNA to this TAP-like equation, we have obtainedike equation, we have replaced the time-dependent local

0.03

B 0.02

0.01 F

V. SUMMARY AND DISCUSSIONS
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fieldsh; in Eq. (6) by their time-averaged ones, and assumedmented into spiking neural networks are often assumed to
that the Onsager reaction term of the form™Ps incorporate the so-called alpha functifb6] or its variant
=—au/(1—u)s; appears in the effective local field as a represented by the dynamics of a certain gating variables

result of fluctuation of local fields. This form of the Onsagerg’lfféf’oga- rr?g(’jgr?/gr ﬁ;@grgg;?tsvater?’\éene?héhg ;siirgpolfe tgzagiiﬂ?s-
reaction term yieldsy"®™-=0, which leads tdf (w,h,h*)

N . _ ) sive couplings among the oscillators and the spiking model
=f(w,h,h™): The effective transfer function we have de- i pe the form of the synaptic couplings together with sym-
rived does not depend on the valuey5©->"*. This is notthe  metry of an individual oscillator with respect to rotation of
case in more general stochastic networks. A more systematife phase variable. While the present model is assumed to
treatment of the/S“>Nterm in stochastic networks, which is take a sinusoidal phase interaction for simplicity, a spiking
found to justify the present approach for our networks, willmodel with a synaptic interaction based on the alpha function
be studied elsewhere. takes the form of pulse like coupling81,32,56,57, which
Some special cases of the present model have also be#iill lead to considering higher harmonics in the phase inter-
investigated by several authors other than Cook. Arenagction.
et al. [41] have investigated the case with=0, where the A spiking neural network model of associative memory
natural frequency distribution is assumed to obey a Gaussiai€ previously studied using FitzHugh-Nagumo neurons ex-
distribution. The result of this case can also be recovered byiPits a nearly comparable size of the storage capacity to that
the present analysis. of the standard analog -network with the transfer functl_on
To our knowledge the case with distributed natural fre-F(1)=[sgnb)+1]J/2 that is larger than the storage capacity
quencies andv>0 was first studied by Parét al. [52] for ~ Of the present modd2]. It will then be of interest to ob-
different synaptic couplings by means of replica calculationSS€rVe the outcome of introducing higher harmonics in the
based on the energy that is defined so as to saisfy phase interaction of the §|mple phase oscnl_ator model. We
—  dHood it e thélo. . takes the f expect the storage capacity of the phase oscillator network to
b Pa{kz ¢'J Z'O'S(; o;r cgs)e, Ew;ark :oiv?ave? ?r:z increase when the higher harmonics is taken into account.
Park™ — 2 2i#jJij i ) Bij) T 2w & - ;

d t mak b h ilibri Such an analysis is now under way.
energy does not make any sense because the equilibrium oo ohlem of investigating properties of neurons syn-

distribution exp(-Hpan/D) does not satisfy the periodical o, nizing the envelope of a burst of spikes is also of inter-

boundary conditiorP({¢i}) =P({;+2}). B est, but is beyond the scope of the present paper, which aims
Aon.|sh| et a]. [53] studied the case W.'t"D_O anq a  at studying the effects of such heterogeneities as a natural
Gaussian dlstrlb'uuon for natural frequenue; by Cons'de“nQrequency distribution and external noise on the robustness
thatq=1 holds in the set of SCSNA equations based on & tamnporal coding in the oscillator network of associative
different scheme fr_om ours even in the presence of the 99U emory. We consider that taking not only phase but also
of the desynchronized oscillators. amplitude as variables for oscillatory neurons will provide a

Yamanaet al.also studied the deterministic oscillator net- oy able model suitable for studying the case with such syn-
work (D=0) with a discrete distribution of natural frequen- . gnization in networks of bursting neurons, which is also
cies that stores binary patterns by making an approximatiof,qer way.

that the motions of the group of desynchronized oscillators
do not exert an influence on the behavior of the synchronized ACKNOWLEDGMENT

oscillators. Discarding the effect of desynchronized oscilla- )

tors corresponds to considering the transfer function that One of the authoréM.Y.) would like to acknowledge the
takes the value zero inside the circle with radiugsee Fig. support of a Grant-in-Aid for Encouragement of Young Sci-
2). For a wide class of natural frequency distributions thiséntists(Grant No. 4415 from the Ministry of Education.
scheme seems to work to a good approximation in the case
with D=0, because the contribution of the desynchronized
oscillators to such order parameteraasg andu is small. It

is noted, however, that, in the case @f: 0, the phase of

every oscillator Withwi?':O evolves with a certain non-zero To obtain the TAP equation for the present model with
time-averaged velocity and hence one cannot distinguish beghe energy functiori2) we follow the method of Plefk&50]
tween synchronized and desynchronized oscillators. Accordand Nakanish{51] used for the SK model and neural net-
ingly for stochastic networks witl>#0 methods based on works of Ising spins.

neglecting the effect of the desynchronized oscillators will  The Hamiltonian(2) with a complex-valued external field
not make sense and one has to deal with all of the oscillatong, + i1 ; included reads

equally as in the present analysis.

Finally, we briefly discuss the relevance of our results to
biologically related models of associative memory. Biologi-
cally relevant modelg31,32,54—57should be based on such
spiking neurons as the Hodgkin-Huxley tyd&4] and
integrate-and-fire type neurong31,32,56,57. A simple
integrate-and-fire neuron that is defined by one-dimensional
linear equation except for firing event can be described inwherea s introduced for the analysis below. Applying Leg-
terms of phase that is obtained by properly scaling the oneendre transformation to the free energy corresponding to the
dimensional output variable. Synaptic couplings imple-HamiltonianH, one has

APPENDIX A: DERIVATION OF THE TAP
EQUATIONS (16) AND (17) IN THE CASE
WITH ;=0 (i=1,...N)

H=aH-Y (Rcose¢+! sing)

:_gz cizzf — X (Ricosg+1;sing;), (A1)
i#] [
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. - We perform a Taylor expansion with respectato

G(a,{s})=—B InTrexr(—,B’H)ﬁLEi (Rix;+1iy;),

(A2) Gla{sh=2

n=0

where B=1/D and s;=x;+iy;=(C0Se),ti{Sinh ),
=(Z)a (- )a denotes expectation with respect to the Hamil-where G(M=4"G/sa"|,_,. Noting B;+il;=3JG/dx;
tonianH. +i9Glay;, we rewrite Eq.(A2) in the form

el

oy a", (A3)

oG +6G(”) _
COS:
X, i i

oG 4G
S ]

G G = 1_|_ E G 9GO
Bx, i+c9—yiyi B nz rex ,8i COoS¢; + v sin¢;

G(a,{si})=—ﬁ‘1InTreXpr a,8H+BE > |(

=B tInz+2,

(n) (n)
xexp[ a,8H+,822 (aG cos¢i+%sin¢i)}

9GMm 9Gm
o0t
IX; aY;

+EZ

=G(0)—,3‘1In<exp{—aBHJrBE1 %An]> (A4)
n= : 0

with where

1
=§2 {(aG ™/ gx;+i9G ™1 3y;)(z;—s)*
I

I'\JII—‘

; ch(zi—s)(z—s)*. (A8)
+(aGM ax;+i>dMay)* (zi—s)},  (AD)
where  Z=Trexp{BZ[(9GVox) cosg; + (9GO ay;) sin ¢} Evaluating G(a,{s;}) by expanding this equation upto
and (-- >o denotes expectation with respect to the Hamil-ihird order ina yields
tonianH with a=0.

Noting s;=(z)a=(z)q, from Eq.(A4), it follows P
a0 B 1E . G(a,{si})=G<°)+(H)0a—E(Bz>oa2

2
Then, from this equation and E¢A4), one has - '%(B3>Oa3+ O(a%), (A9)
G(a,{s))=GP+a(H)y—B tIn
an where it is noted thatB)o=(A,)o=(BA,)=0 for every
< exp[ apB+ ,82 ] >
0

(A7)  integern=1. Then, noting(z;—s;)o=((z—S;)*)o=0, we
have
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G(a,{s})=G Y+ 2

- 1%2 {Ei(2,0E;(0,2¢:2+E(0,2E{(2,0c >+ 2E(1,DE;(1,)cf ¢
i#]

——Z chsist |la+ chlla
|¢]
E{E(30)E(03)c +Ei(0,3E;(3,00¢) >+ 3E(2,DEj(1,2)c}; ’c + 3E(1,2E;(2,Dcf ¢ 2
I#J
2
fs %) {Ei(2,0E;(1,DE(0,2¢]: cficly + Ei(1LDE;(2,0E((0,2ckch che+ Ei(1,DE;(1L,DEy(1,Dcf; chci

+Ei(0,2E;(2,0 El(1,) ¢k chict + Ei(2,0 Ej(0,2 E(1,Dch che+ Ei(LDE; (LD E (1D chch e

+Ei(L,DE;(0,2Ex(2,0ckciick; + Ei(0,2Ej(1,)Ex(2,0ci cic;} [a+ O(a%), (A10)

where E;(n,m)=((z;—s))"(z" —s")™o. and (ijk) denotes  s;=(cos¢;)o+i(sine;)o
all combination to be taken so that either two of the indexes

do not coincidenote that(ij) impliesi#j]. Then substitut- | L BV(9G O ax:) 2+ (9G V1 ay)?]
ing Eq. (A3) into Eq. (A10) yields, in the limitN— oo, Io[,B\/(aG(O)/axi)er(ﬁG((’)/ayi)z]
a aNB(1-q)? .
G(a,{s})=G9— E;j cisist — Taz y 3G9/ gx;+i19G 9/ gy,
V(0G979%)2+ (0G9 gy;)?
aNp(1-q)° 4
- a0, (Al11) =f[0,0G 0/ ax;+i9G O/ gy; ,(dG V1 ax; +iG O/ ay;)* ],

, (A16)
where q=(1/N)Z;|si|*. Note that all the relevant terms

higher than the term of first order ia under the limitN  \yhere |, (r)=(1/5 [27) [3™ exp cosg)coske dp,  and
— o comes from the following in Eq10) f(0,h,h*) is just the effective transfer function we intro-

angnt duced in Egs(9), (14), and(15).
- E E. (1,DE (1,1 -E (1,1 Considering the case with=1, from Egs.(14) and(16)
2N (g 2 n we finally obtain the TAP equation:
X Ci*lizci*zia' . -ci*nil_ (A12) 5 = f(o,hiTAP’hiTAP* ), (A17)

Since every higher order term than the first order one con-

tains—a"g"~%B"),/n!, one may expect that it yields terms hIAP= > cijSj+ y™Ps + R +il;, (A18)
of the form of Eq.(12). Summarizing those terms we will J#i
have
1-q)/2

a Bn—l 'yTAPZ — af—ﬁ( q) . (Alg)
G(a,{s})=GP—=> ciss'—aND, ——(1—q)"a". 1-p(1-q)/2

2i7 N =2 2™

(A13) APPENDIX B: DERIVATION OF EQ. (27)
Then, notingga/dx;+idq/dy;=2s; /N, we obtain To derive Eq(27), we substitute Eq(20) into Eq.(22) to
9G  9G 9GO 5O obtain
R+ilj=—+i—= +i
IX; i X i 1
hi=m'+— et s+ y™Ps;
aE Cljs] TAP S, (A14) N p>1 j#i
A Lot .
wherey™P=—aa{aB(1—q)/2}/{1—aB(1—q)/2}. @ Z:l 2 g, e — fix gft
In the case oi=0,H becomes potd . J (EJH ,EJ#*)
Fi=—2 {(9G\%dx;)cose; + (4G ay;)sin b} Ms i -
i + N §ETET — k Sk
(A15) S (e e

Thus, we have (B1)
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Utilizing the relationsgf‘gf‘*=1, (IN)Z,¢=0, and so on, Jaru= (((x+|y)f —wh* ~)>>_ (C1)
the fourth term of Eq(B1) becomes, in the limiN—oo,
Accordingly, we have

A *
— > D > e er—

N2 i>1 [#i k=)

et Jaru=(({(x—iy) (o RF)p)=Varu (€2

to conclude that is real.

APPENDIX D: DERIVATION OF THE MACROSCOPIC
ORDER PARAMETER EQUATIONS FOR THE
CASE WITH D=0 AND a=0

A *
:Ngl Ek: §EL Sk E

= _ﬁ

_ ﬁ E “EE ﬁ u* ot In the case wittb =0 anda =0, substituting Eq(10) into
-2, — & s
Nz>1 7 NiFi gpl ~ - . Eq. (21), we have
(hf,h)
N a, 0<m$w1
u
= HEESE 4 QUM . B2 = °— w? D1
N & s | (82) " g TR am (DD

Following the almost same scheme the fifth term of the right

hand side of Eq(B1) is shown to vanish in the limiN ~ Using Eq.(10) we also obtain, from Eq937) and (39), q
— o0, Substituting Eq(22) into the left-hand side of E§B1) ~ andu as a function ofm:

we obtain Eq.(27).

2\ 2
W1—\Vyw7;—M
. at(l-a) —————|, 0<m=ow,
APPENDIX C: DERIVATION OF EQS. (38) AND (39) q m

The Eq.(38) is straightforwardly derived from the defini- 1, w;<m
tion of u by noting ((4f/dh))={((1/2f/s{Reh)} (D2)
—igflo{lm(h)}])) and performing integration by parts. To a
show Eq.(39) from Eq. (32) it is suffice to prove thati is o o<m=sw,
real.

To showu is real, note the rotationary symmetry structure U=1 a 1—-a (D3)
of the form of transfer function9) as is illustrated in Fig. 2. Tt ———, wi1<m,

_ 2m fm?2 —

Because of this symmetry structure fifw,h,h*) we also 2ym*— o]

haveT[w,re”’,(re”’)T*o]TiLem?(w,r,r) in the presence of \here we have notedu=((Relaf/oh}))=((Rel(e /2)
nonzero complexy - One also immediately finds s st/9r —(i/r)af/96)})), that is obtained by representlng
f(w,r,r)=f(—o,r,r)* andf(o,r,r)=f(-w,r,r)*. Then the local field with the polar coordinate, ile=re'’

it follows thatf[ w,re'?, (rd®)* 1=F[ — o, (re')* ,re'?]* and As w, approaches the point of phase transition from be-
(x—iy)F(w,h,h*)={(x+iy)T(—w,h* h)}*. On the other 0w, uincreases as is shown in Fig. 4. At the phase transition

hand, notingg(w)=g(— ) and changing the variables for point wherem=a+(1-a)\m*—wi/m and (@/dm){a+(1
integration, we have, from E¢38), —a)\/mz—wf/m}: 1, one hasi=1.

[1] C. M. Gray and W. Singer, Proc. Natl. Acad. Sci. URS, [11] A. Treves and P. J. Amit, J. Phys. 22, 2205(1989.

1698(1989. [12] E. Gardner, J. Phys. &1, 257 (1988.
[2] R. Eckhorn, R Bauer, W. Jordan, M. Brosch, W. Kruse, M. [13] R. Kihn and S. Be, J. Phys. A26, 831(1993.
Munk, and R. J. Reitboeck, Biol. Cyber60, 121 (1988. [14] A. C. C. Coolen and D. Sherrington, Phys. Rev4& 1921
[3] C. von der Malsburg and W. Schneider, Biol. Cybesd, 29 (1994.
(1986. [15] T. Fukai and M. Shiino, Phys. Rev. 42, 7459(1990.
[4] C. von der Malsburg, Ber. Bunsenges Phys. CH#9n703  [16] F. R. Waugh and C. M. Marcus, Phys. Rev. L&, 1986
(1985. (1990.
[5] P. M. Milner, Psychol. Rev81, 521 (1974). [17] L. F. Cugliandolo and M. V. Tsodkys, J. Phys. &V, 741
[6] A. R. Damasio, Semin. Neuroscien2e287 (1990. (1994).
[7] J. J. Hopfield, Proc. Natl. Acad. Sci. USF9, 2554(1982. [18] L. F. Cugliandolo, Neural Compu6, 220(1994.
[8] D. J. Amit, H. Gutfreund, and H. Sompolinsky, Ann. Phys. [19] M. Griniasty, M. V. Tsodks, and D. J. Amit, Neural Comput.
(Leipzig) 173 30(1987). 5, 1(1993.
[9] M. Shiino and T. Fukai, J. Phys. 23, L1009 (1990. [20] P. Peretto, J. PhysFrance 49, 711(1988.

[10] R. Kuhn, S. B®, and J. L. van Hemmen, Phys. Rev.48, [21] D. O. Hebb, Organization of BehaviofWiley, New York,
2084 (1991). 1949.



4744

[22] M. Yoshioka and M. Shiino, Phys. Rev. %5, 7401(1997).

[23] M. Yoshioka and M. Shiino, J. Phys. Soc. J@6, 1294
(1997.

[24] W. Mass, Neural Compu8, 1 (1996.

[25] D. Hansel, G. Mato, and C. Meunier, Neural Compyt307
(1995.

[26] C. van Vreeswijk, L. F. Abbott, and G. B. Ermentrout, J.
Comp. Neuroscil, 313(1994.

[27] W. Gerstner, R. Ritz, and J. L. van Hemmen, Biol. Cyb&8).
503 (1993.

[28] W. Gerstner, Phys. Rev. &1, 738(1995.

[29] A. V. M. Herz, Z. Li, and J. L. van Hemmen, Phys. Rev. Lett.
66, 1370(199).

[30] A. Treves, E. T. Rolls, and M. W. Simmen, PhysicalD?7,
392 (1997.

[31] P. C. Bressloff and S. Coombes, Phys. Rev. Lett. 2168
(1998.

[32] P. C. Bressloff and S. Coombes, Phys. Rev. Lett. 2384
(1998.

[33] C. C. Chow, Physica 118 343(1998.

[34] A. L. Hodgkin and A. F. Huxley, J. PhysiolLondon 117,
500 (1952.

[35] R. FitzHugh, Biophys. J1, 445 (1961).

[36] J. Nagumo, S. Arimoto, and S. Yoshizawa, Proc. BX-2061
(1962.

[37] M. Yoshioka and M. Shiino, Phys. Rev. B, 3 (1998.

MASAHIKO YOSHIOKA AND MASATOSHI SHIINO

PRE 61

[39] H. Sakaguchi, Prog. Theor. Phy&9, 39 (1988.

[40] H. Daido, J. Stat. Phy$0, 753(1990.

[41] A. Arenas and C. J. Perez Vicente, Europhys. L26,. 79
(1994).

[42] J. Cook, J. Phys. &2, 2057(1989.

[43] T. Aoyagi and K. Kitano, Phys. Rev. &5, 7424(1997).

[44] M. Yamana, M. Shiino, and M. Yoshioka,
cond-mat/9901301.

[45] M. Shiino and T. Fukai, J. Phys. 25, L375 (1992.

[46] M. Shiino and T. Fukai, Phys. Rev. 48, 867 (1993.

[47] D. J. Thouless, P. W. Anderson, and R. G. Palmer, Philos.
Mag. 35, 593 (1977).

[48] M. Mezard, G. Parisi, and M. A. Virasor&pin Glass Theory
and BeyondWorld Scientific, Singapore, 1987

[49] S. Kirkpatrick and D. Sherrington, Phys. Rev. B, 4384
(1978.

[50] T. Plefka, J. Phys. A5, 1971(1982.

[51] K. Nakanishi and H. Takayama, J. Phys38, 8085(1997.

[52] K. Park and M. Y. Choi, Phys. Rev. &2, 2907(1995.

[53] T. Aonishi, K. Kurata, and M. Okada, Phys. Rev. L&®,
2800(1999.

[54] X. J. Wang and G. Buzaki, J. Neuros&b, 6402(1996.

[55] D. Terman, N. Kopell, and A. Bose, Physica 17, 241
(1998.

[56] M. Gabbay, E. Ott, and P. N. Guzdar, PhysicalDg 371
(1998.

e-print

[38] Y. Kuramoto,Chemical Oscillations, Waves, and Turbulence [57] U. Ernst, K. Pawelzik, and T. Geisel, Phys. Rev. Lé#.1570

(Springer-Verlag, Berlin, 1984

(1995.



