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Associative memory storing an extensive number of patterns based on a network of oscillators
with distributed natural frequencies in the presence of external white noise

Masahiko Yoshioka* and Masatoshi Shiino†

Department of Applied Physics, Tokyo Institute of Technology Ohokayama, Meguro-ku, Tokyo 152, Japan
~Received 24 March 1999!

We study associative memory based on temporal coding in which successful retrieval is realized as an
entrainment in a network of simple phase oscillators with distributed natural frequencies under the influence of
white noise. The memory patterns are assumed to be given by uniformly distributed random numbers on@0,
2p! so that the patterns encode the phase differences of the oscillators. To derive the macroscopic order
parameter equations for the network with an extensive number of stored patterns, we introduce an effective
transfer function by assuming a fixed-point equation of the form of the Thouless-Anderson-Palmer equation,
which describes the time-averaged output as a function of the effective time-averaged local field. Properties of
the networks associated with synchronization phenomena for a discrete symmetric natural frequency distribu-
tion with three frequency components are studied based on the order parameter equations, and are shown to be
in good agreement with the results of numerical simulations. Two types of retrieval states are found to occur
with respect to the degree of synchronization, when the size of the width of the natural frequency distribution
is changed.

PACS number~s!: 02.50.2r, 05.45.Xt, 87.18.Sn, 75.10.Nr
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I. INTRODUCTION

Recently a population of neurons in the cat visual cor
has been reported to exhibit synchronized firings in a stim
lus dependent manner@1,2#. The occurrence of correlation
in firing times of neurons seems to be a ubiquitous phen
enon in real nervous systems. The role of such synchron
firings for information processing in the brain has been
tracting growing interest of researchers, and several aut
have suggested neural network models based on the con
of temporal coding, where information of a neuron is rep
sented by its firing times. Indeed, to explain the experime
findings that visual information of an external object is pr
cessed with being divided into several pieces of informati
several authors@3–6# have suggested that the synchroniz
firings of neurons may serve as a linker for those pieces
information.

The problem of investigating how an associative mem
is realized in real nervous systems as well as of construc
biologically relevant models is of central concern of neu
scientists. Since the establishment of systematic theorie
associative memory for networks with an energy funct
that is ensured by assuming symmetric synaptic coupli
@7–16#, several attempts have been made to make mode
biologically plausible as possible@17–19#. Previously we in-
vestigated the effects of asymmetric couplings@20# for
memorizing presynaptic and post-synaptic activities, wh
are incorporated into the standard symmetric Hebb learn
rule @21#, by studying networks of analog neurons@22,23#,
whose continuous-time dynamics involves a positive-valu
transfer function representing the mean firing rates of a n
ron as a function of membrane potential.

*Electronic address: myosioka@mikau.ap.titech.ac.jp
†Electronic address: mshiino@ap.titech.ac.jp
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Instead of working with the concept of rate coding bas
on the idea that neuronal information is represented by m
firing rate of a single neuron, one may be concerned with
concept of temporal coding, when considering that spa
temporal patterns of neuronal firings will make informatio
carried by a population of neurons much richer than spa
patterns alone. A spiking neuron is considered to be one
the candidates for implementation of temporal coding@24–
33#. The time evolution of membrane potential that is gen
ated in response to an injected synaptic electric current
spiking neuron is described by such nonlinear dynamics
Hodgkin-Huxley equation@34#, FitzHugh-Nagumo equation
@35,36#, or the equation of an integrated-and-fire neuro
Spiking neurons in a network are generally supposed to
teract with each other via pulses generated in the fir
events occurring in the pre-synaptic neuron. We have sho
previously that even in the presence of time delays in tra
mission of the pulses an associative memory based on a
work of spiking neurons can be realized by assuming
simple Hebb-type learning rule alone, and that the mem
retrieval accompanies synchronized firings of neurons. T
dynamics of such associative memory was analyzed
means of sublattice method in our previous paper@37#.

In the previous analysis@37# we assumed that every neu
ron shares identical characteristics to exhibit the same r
tion in response to the same injected current. In real nerv
systems, however, neurons in a network may have their o
individual characteristics.

The problem of whether temporal coding functions r
bustly in the presence of certain heterogeneities of neur
will be of particular interest. For the purpose of investigati
such a problem for the phenomenon of synchronized osc
tions in associative memory neural networks, we conside
appropriate to deal with simple models of coupled oscillat
with distributed natural frequencies and external noise. I
well known that, under certain conditions, a population
oscillators with distributed natural frequencies is allowed
4732 ©2000 The American Physical Society
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get partially entrained in such a way that oscillators with
natural frequency near the central frequency become to
cillate synchronously at identical frequency as a result
cooperative interactions@38–40#.

Kuramoto@38# showed that the dynamics of this kind o
network of oscillators with sufficiently weak interactions c
be reduced to a simple phase dynamics. Supposing that
rons in a network are treated as phase oscillators, associ
memory has been shown to be realized under a simple le
ing rule of the Hebb-type either in the case of a finite num
of stored patterns@41,39# or in the case with a single natura
frequency@42,43#. Satisfactory analysis of the case with
distribution of natural frequency and extensively ma
stored patterns has been far less conducted. Quite rece
we have reported the study of a deterministic phase oscill
network with a distribution of natural frequencies where
extensive number of binary patterns~61! are stored with use
of the Hebb learning rule@44#.

The main purpose of the present study is the theoret
analysis of associative memory based on temporal cod
with use of networks of phase oscillators in the more gen
case where the number of stored patterns that are give
uniformly distributed random numbers on@0, 2p! is exten-
sive, natural frequencies of the oscillators are distributed
cording to a certain distribution function, and furthermo
external white noise is added to the system.

While one can analyze a phase oscillator network wit
single natural frequency by means of the replica method
makes full use of its associated energy function, one can
resort any more to the standard method of statistical phy
based on the existence of an energy function in the cas
networks with a distribution of natural frequencies.

One can, however, use the self-consistent signal-to-n
analysis ~SCSNA! @45,46,22,23,37# to deal with general
cases without energy functions. To apply the SCSNA it
necessary to know fixed-point equations describing the e
librium states of the network. When considering such eq
tions in stochastic systems, we may take advantage of
concept of the Thouless-Anderson-Palmer~TAP! equation
@47,48#.

The Thouless-Anderson-Palmer~TAP! equation is known
to exist for the Sherington-Kirkpatrick~SK! model of spin
glasses@48–50# and the Hopfield model of an Ising spi
neural networks@8,48,51#, and to represent a functional re
lationship between the thermal or time average of each
in equilibrium and its corresponding effective local field th
involves the so-called Onsager reaction term@48#. Useful-
ness of the TAP equation in deriving the order parame
equations of associative memory networks is attributed to
fact that the resulting equations of the replica calculations
Amit et al. is recovered by the result of application of th
SCSNA to the TAP equation@46#, where the Onsager reac
tion term is canceled exactly by the appearance of the re
malized output term of the SCSNA@46#. We note that the
TAP equation of the naive mean field model with the int
actions given by the Hebb learning rule defines to an ana
network equation with the transfer function tanh (bh) @46#.

We first evaluate an analogue of the TAP equation of
naive mean-field type for our model with a distribution
natural frequencies by dealing with the Fokker-Planck eq
tion. In order to obtain the Onsager reaction term we co
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pute the free energy of the network without a distribution
natural frequencies to derive the TAP equation by followi
the method of Plefka@50# and Nakanishi@51#. Then we as-
sume that the TAP-like equation also exists with the Onsa
reaction term remaining the same even for networks wit
distribution of natural frequencies, and that such a TAP-l
equation defines an effective transfer function to which
SCSNA is applicable to obtain the order parameter eq
tions.

The present paper is organized as follows. In Sec. II,
introduce a neural network of simple phase oscillators a
describe how the network functions as an associa
memory based on a simple learning rule of the Hebb-type
Sec. III, we give a theoretical analysis to derive the mac
scopic order parameter equations describing the long t
behavior of the system. On the basis of the order param
equations, in Sec. IV we investigate properties of mem
retrieval accompanying synchronization in the networks
assuming a discrete symmetric natural frequency distribu
with three frequency components. Results of numeri
simulations are presented showing good agreement
those of theoretical analysis. In Sec. V, comparing our w
with those of other researchers conducted previously,
summarize the results of the present study.

II. NEURAL NETWORKS OF PHASE OSCILLATORS
WITH DISTRIBUTED NATURAL FREQUENCIES

The system under consideration is a network ofN phase
oscillators subjected to external white noise, whose dyna
ics is expressed as

ḟ i5v i2(
j Þ i

N

Ji j sin~f i2f j2b i j !1h i~ t !, ~1!

where f i and v i represent the phase and the natural f
quency of oscillatori, respectively.b i j and Ji j represent a
certain phase shift and the strength of coupling between
cillator i and j, respectively. The Gaussian white noiseh i(t)
is assumed to satisfy^h i(t)&50 and ^h i(t)h j (t8)&
52Dd i j d(t2t8).

When v i50(i 51, . . . ,N), ci j 5Ji j exp(ibij) satisfy ci j

5cji* with * denoting complex conjugation andJi j take real
values, the system~1! has the energy function:

H~$f i%!52
1

2 (
iÞ j

Ji j cos~f i2f j2b i j !. ~2!

Then one has an equilibrium probability distributionr($f i%)
proportional to exp@2H($fi%)/D#. In the case ofD50, the
function ~2! becomes a Lyapunov function of the system a
hence the state of the system eventually settles into a ce
fixed point attractor after a long time.

In the present study, we assume natural frequencies t
distributed accordingly to an even distribution functio
g(v)5g(2v) so that the average of natural frequencies
come zero without loss of generality. To storeP quenched
random patternsu i

m( i 51, . . . ,N,m51, . . . ,P) chosen from
the uniform distribution on the interval@0, 2p!, we assume
the Hebb type learning rule, and set the parameterb i j and
real valuedJi j such that



-

er

b

or
es

l

r

r
en

ru
o
io

b
tin
ld
o

th
a
u

,
n
im
din
io
nc
C
a
iv

am-

d-
c-
e.

ed
e
ent

body

ven
the
ns
tua-
e
ur-
m:
e-

equi-

in

4734 PRE 61MASAHIKO YOSHIOKA AND MASATOSHI SHIINO
ci j 5Ji j exp~ ib i j !5H 1

N
Sm51

P j i
mj j

m* iÞ j

0 i 5 j

, ~3!

wherej i
m5exp(iu i

m). This definition of couplings gives net
works the following properties:

~1! In successful retrieval an entrainment occurs, wh
synchronized oscillators satisfyf i2f j'u i

m2u j
m with a tar-

get patternm recalled. ~Note that if f i is the solution of
dynamics~1!, uniformly shifted phasef̃ i5f i1c also be-
comes its solution. What matters is not the phase itself
their differencef i2f j .)

~2! In the case of unsuccessful retrieval, all the oscillat
fail to synchronize, running at their own natural frequenci

To measure the distance between the patternm and the
state of the system, we introduce the overlap for patternm

mm~ t !5
1

N (
i

j i
m* zi~ t !, ~4!

where we denoteeif(t) by zi(t). Then by use of the loca
field

hi~ t !5(
j Þ i

ci j zj~ t !5(
m

j i
mmm~ t !2azi , ~5!

the dynamics~1! is rewritten as

ḟ i5v i2Re$hi~ t !%sinf i1Im$hi~ t !%cosf i1h i~ t !, ~6!

where a denotes the loading rateP/N. From Eq.~6! it is
easy to see that the learning rule~3! indeed realizes the
above mentioned properties if the number of stored patte
is finite (a50) andv i50 (i 51, . . . ,N). The memory re-
trieval accompanying synchronization can also occur foa
.0 even in the presence of a distribution of natural frequ
cies.

III. MACROSCOPIC ORDER PARAMETER EQUATIONS

Behaviors of associative memory networks depend c
cially on the nature of the local fields or the neurons
oscillators, because the updating rule for the time evolut
of the system is based on the local fields as is seen in Eq.~6!.
When the long time behavior of a network is described
fixed point type attractors, the relation between the resul
output state of a neuron and the corresponding local fie
becomes essential for determining equilibrium properties
the networks. Such a relation is naturally introduced in
case of deterministic analog networks where neurons
characterized by transfer functions describing the inp
output relation.

For such stochastic systems~1! as Ising spin networks
equilibrium fixed-point equations called the TAP equatio
are known to exist as expressing the relation between t
average of each output of a neuron and its correspon
effective local fields involving the so-called Onsager react
term that is proportional to the time-averaged output. O
the TAP-like equation level description is available, the S
SNA, in which one computes the variance of the cross-t
noises in the local field as a result of storing an extens
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number of patterns, can be applied to obtain the order par
eter equations in the limitN→`.

A. Effective transfer function based on time-averaged local
field and the TAP-like equation

If v i50 (i 51, . . . ,N) andD50, the state of the network
eventually settles into an equilibrium state given by a fixe
point attractor owing to the existence of the Lyapunov fun
tion ~2!, and then the local fields do not fluctuate in tim
Even in the presence of external white noise (DÞ0), the
local fields also get fixed in time after a long time, provid
a5P/N50. When the local fields are fixed over the tim
change due to the law of large numbers, theoretical treatm
becomes simple because one can reduce the many
problem to a single-body problem.

In the more general case wherea.0 and/or natural fre-
quencies are distributed, the local fields may fluctuate e
with a large number of oscillators as can be shown in
numerical simulation illustrated in Fig. 1. The fluctuatio
seem to be aperiodic and rigorous analysis of such fluc
tions is quite difficult. To deal with this situation we ar
forced to resort to a certain approximation by confining o
selves only to the near equilibrium behavior of the syste
we replace the time-dependent local fields by their tim
averaged ones

hi~ t !'hi5(
j Þ i

ci j zj , ~7!

where the overbar represents the time average at near
librium.

FIG. 1. The typical time evolution of the local fields observed
numerical simulations withN58000,a50.02,D50. Natural fre-
quencies are chosen so as to obey~a! a Gaussian distribution
g(v)5exp(2v2/2s2)/A2ps2 with s50.3 and ~b! g(v)
50.15d(v11.4)10.7d(v)10.15d(v21.4).
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Once we apply this approximation, we are allowed to tr
each interconnected oscillator as an element obeying the
namics of one degree

ḟ i5v i2Re~hi !sinf i1Im~hi !cosf i1h i~ t !, ~8!

which is expected to describe the behavior of the oscillati
near equilibrium. It turns out that the time averagezi at equi-
librium can be expressed as a function ofv i and hi : zi

5 f (v i ,hi ,hi* ). We call it the transfer function in the case
network of analog neurons. It is easy to show that the tra
fer function f (v,h̄,h̄* ) satisfies

f †v,reiu,~reiu!* ‡5eiu f ~v,r ,r !. ~9!

Hence it suffices to calculatef (v,r ,r ) to obtain
f @v,reiu,(reiu)* #. In the absence of white noise (D50), we
can easily obtain the transfer function for real-valued lo
field r @38#:

f ~v,r ,r !55
i

r
~v1Av22r 2!, v,2r

1

r
~ iv1Ar 22v2!, 2r ,v,r

i

r
~v2Av22r 2!, r ,v.

~10!

In deriving Eq. ~10! in the case of2r ,v,r we usedḟ

50 together withdḟ/df,0. In the case ofv,2r or r
,v we computed the time average of exp@if(t)# over the
periodT0 of the periodic oscillations off:

f ~v,r ,r !5
1

T0
E

0

T0
exp@ if~ t !#dt5

E
0

2p eif

ḟ
df

E
0

2p 1

ḟ
df

5

E
0

2p eif

v2r sinf
df

E
0

2p 1

v2r sinf
df

. ~11!

In Fig. 2, we illustrate the shape of the transfer functi
f (v,h̄,h̄* ) that is obtained from Eqs.~9! and ~10!.

In the presence of white noise (D.0), from the Langevin
equation~8! we obtain the Fokker-Planck equation

ṙ~f,t;v,h̄!52
]

]f
$@v2Re~ h̄!sinf1Im~ h̄!cosf#r%

1D
]2r

]f2 , ~12!

where r(f,t;v,h̄) is the probability distribution of phas
fP@0,2p# at time t, and periodic boundary condition
r(0,t;v,h̄)5r(2p,t;v,h̄), dr(0,t;v,h̄)/df
t
y-

s-

l

5dr(2p,t;v,h̄)/df are imposed. Since we are concern
with the probability distributionreq(f;v,r ) attained after a
long time, we setṙ(f,t;v,r )50 to obtain@39,41#

req~f;v,r !5
I ~f!

E
0

2p

I ~f!df

~13!

with

I ~f!5exp~ r̃ cosf!E
0

2p

exp$2ṽw2 r̃ cos~w1f!%dw,

~14!

whereṽ5v/D and r̃ 5r /D. Noting the ergodic property on
the Fokker-Planck equation~12!, which holds whenh̄ is
viewed as a given parameter, we obtain the time averagez
by computing the average over the equilibrium distributi
req(f;v,r )

f ~v,r ,r !5

E
0

2p

eifI ~f!df

E
0

2p

I ~f!df

. ~15!

The transfer function we have obtained here can be c
sidered to be an analogue of the so called TAP equation
the naive mean field model, because the time average o
output z̄ is represented as a function of time-averaged lo
fields h̄. We note, however, that the genuine TAP equati
which is defined for systems with an energy function, sho
describe the functional relation between the time avera
output and the effective local field that differs in gene
from the time-averaged one. The difference between the
types of local fields is known to be the Onsager reaction te

FIG. 2. Graphical representation of the effective transfer fu

tion f (v,h̄,h̄* ) in the case withD50 and v.0. The output

f (v,h̄,h̄* ) is represented by a vector at the positionh̄ on the com-

plex plane. In the region, whereuh̄u,1, oscillators get synchronized

with u f (v,h̄,h̄* )u51, while inside the circle oscillators get desyn

chronized withu f (v,h̄,h̄* )u,1. In the case ofv,0 the rotational
direction of the flow pattern gets reversed owing to the prope

f (2v,h̄,h̄* )5$ f (v,h̄* ,h̄)%* .



t
em
th

n

s-
cy
th

s

s

e

y

re
ad

-
o

(
.
n

of
alk

n-
n

f

t

4736 PRE 61MASAHIKO YOSHIOKA AND MASATOSHI SHIINO
in the theory of random spin systems. We assume that
TAP-like equation may hold even for the present syst
without an energy function, and suppose it to be given by
following equations

zi5 f ~v i ,hi
TAP ,hi

TAP* !, ~16!

hi
TAP5hi1gTAPzi

5(
j Þ i

ci j zj1gTAPzi5(
m

j i
mmm2azi1gTAPzi .

~17!

In the case withv i50 (i 51, . . . ,N), by evaluating the free
energy of the system, we can derive an explicit expressio
the coefficientgTAP taking the form~see Appendix A!

gTAP52a
~12q!/2D

12~12q!/2D
, ~18!

where

q5
1

N (
i

UziU2

. ~19!

It will, however, be difficult to rigorously derive an expre
sion of gTAP for the general case with a natural frequen
distribution. Thus we are led to make an assumption that
legitimate expression~18! for the case withv i50 (i
51, . . . ,N) can naturally be extended to the general ca
Describing the desiredgTAP requires the introduction of the
order parameteru that appears in the SCSNA.

B. Self-consistent signal-to-noise analysis

We consider the case withm15O(1) and mm

5O(1/AN) (m52, . . . ,P), where we choose pattern 1 a
the target. Assuming, without loss of generality, thatj i

151
for all i andm1 is real owing to the rotational symmetry, th
local field Eq.~17! is rewritten in the form:

hi5m11
1

N (
m.1

(
j Þ i

j i
mj j

m* sj1gTAPsi , ~20!

where we have usedsi , hi , andmm to represent respectivel
zi , hi , andmm for brevity.

When we consider the case with a finite number of sto
patterns, the analysis is straightforward since we alre
know the form of the transfer functions~10! (D50) and
~15! (DÞ0). SincegTAP50 and hi5m1 in this case, we
have in the limitN→`

m15
1

N (
i

j i
1* si→^ f ~v,m1,m1!&v , ~21!

where ^¯&v5*g(v)¯dv. Solving this equation numeri
cally, we evaluate the size of the overlap as a function
various parameters includingD.

In the case of an extensive number of stored patternsa
.0), however, the cross-talk noise@the second term of Eq
~20!# in the local fields becomes to an appreciable exte
he

e

of

e

e.

d
y

f

t,

then one has to employ the method of SCSNA. The crux
the SCSNA is the evaluation of the variance of cross-t
noise that interferes occurrence of retrieval state.

According to the prescription of the SCSNA@23#, the
local field ~20! is assumed to be in the form:

hi5m11
l

N (
m.1

(
j Þ i

j i
mj j

m* sj
m1gSCSNAsi1gTAPsi ,

~22!

wheresj
m , whose explicit expression is given later, is a qua

tity that is very close tosj
m and has a negligible correlation i

the limit N→`, andl andgSCSNA are to be self-consistently
determined in the course of analysis.

Defining h̃i5m11(l/N)(m.1( j Þ ij i
mj j

m* sj
m , Eq. ~16!

reads

si5 f †v i ,h̃i1gTOTALsi ,~ h̃i1gTOTALsi !* ‡, ~23!

wheregTOTAL5gSCSNA1gTAP.
Considering a general case withgTOTALÞ0, we solve Eq.

~23! for si , to obtain the renormalized outputsi

5 f̃ (v i ,h̃i ,h̃i* ). Performing a Taylor expansion o

f̃ (v i ,h̃i ,h̃i* ) about (h̃i
m ,h̃i

m* ), we have

si5si
m1

] f̃

]h̃
U

~ h̃
i
m ,h̃

i
m* !

l

N
(
j Þ i

j i
mj j

m* sj
m1

] f̃

]h̃*
~ h̃

i
m ,h̃

i
m* !

3S l

N
(
j Þ i

j i
mj j

m* sj
mD *

~24!

with

h̃i
m5m11

l

N (
nÞ1,m

(
j Þ i

j i
nj j

n* sj
n , ~25!

si
m5 f̃ ~v i ,h̃i

m ,h̃i
m* !. ~26!

Substituting Eq.~24! into Eq. ~20! and comparing the resul
with Eq. ~22! ~see Appendix B for details! we obtain

m11
l

N (
m.1

(
j Þ i

j i
mj j

m* sj
m1gSCSNAsi1gTAPsi

5m11
11ul

N (
m.1

(
j Þ i

j i
mj j

m* sj
m1aulsi1gTAPsi

~27!

where

u5
1

N
(

i

] f̃

]h̃
U

~ h̃i ,h̃
i* !

. ~28!

Since this equation holds for every sitei, l andgSCSNA are
self-consistently determined as

l5
1

12u
, ~29!
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gSCSNA5a
u

12u
. ~30!

The variance of renormalized noise Ñi

5(l/N)(m.1( j Þ ij i
mj j

m* sj
m in the right-hand side of Eq

~22! can be evaluated by noting that Re(Ñi) and Im(Ñi) dis-
tribute over sites obeying an identical Gaussian distribut
independently and the site average ofuÑi u2 can be replaced
by the pattern average: one has

1

N (
i

uÑi u25^uÑi u2&j5aulu2q. ~31!

To represent the noise asÑi5Aar (xi1 iy i)/2, wherexi and
yi are real and obey a normal Gaussian, we define

r 52ulu2q5
2q

u12uu2
. ~32!

Summarizing Eqs.~4!, ~19!, ~22!, ~23!, ~28!, ~29!, ~30!,
and ~32!, we have a set of macroscopic order parame
equations

s5 f @v,h̃1gTOTALs,~ h̃1gTOTALs!* #, ~33!

h̃5m1
Aar

2
~x1 iy !, ~34!

gTOTAL5gSCSNA1gTAP, ~35!

m5^^ f̃ ~v,h̃,h̃* !&&, ~36!

q5^^u f̃ ~v,h̃,h̃* !u2&&, ~37!

Aaru5^^~x2 iy ! f̃ ~v,h̃,h̃* !&&, ~38!

r 5
2q

~12u!2 , ~39!

gSCSNA5a
u

12u
, ~40!

where ^^¯&& represents^^¯&v& h̃5(1/2p*g(v)exp@2(x2

1y2)/2#¯dvdxdy. Detailed derivation of Eqs.~38! and
~39! is given in Appendix C.

To discuss the generalized expression forgTAP for the
case with a distribution of natural frequencies, we consi
for the moment the case withv i50 (i 51, . . . ,N), where
Eq. ~18! exactly holds. In this case it turns out thatgTOTAL

50 by a rough argument given below. Note thatgTOTAL

50 implies f̃ (v,h̃,h̃* )5 f (v,h,h* ), and that the effective
transfer function~15! becomes

f ~0,r ,r !5
*0

2p cosf exp~ r̃ cosf!df

*0
2p exp~ r̃ cosf!df

. ~41!

Using Eqs.~9! and~41! and performing the average over th
Gaussian distribution with unit variance for Eq.~38!, we
obtain
n

r

r

u5~12q!/2D. ~42!

Then, from Eq.~18!, we have

gTAP52a
u

12u
, ~43!

which immediately reconfirms

gTOTAL5gSCSNA1gTAP50. ~44!

Now we observe thatin the case withv i50 (i , . . . ,N)
the Onsager reaction termgTAPSi cancels out with the term
gSCSNASi that emerges as a result of the evaluation of t
correlation between the state of oscillators and the sto
patterns. Thenwe assume Eq. (43) to hold generally so th
gTOTAL50. As will be shown later the results obtained bas
on this assumption show good agreement with the result
numerical simulations.

IV. BEHAVIORS OF THE NETWORK WITH A DISCRETE
NATURAL FREQUENCY DISTRIBUTION

For the sake of simplicity we focus on the behavior of t
oscillator network with a discrete natural frequency distrib
tion g(v)

g~v!5
12a

2
d~v1v1!1ad~v!1

12a

2
d~v2v1!,

~45!

wherea represents the ratio of the number of oscillators w
v i50 to the total number of oscillatorsN.

A. Appearance of a window for breakdown of the retrieval
states

To roughly sketch the effects of the natural frequen
distribution with three frequency components, we investig
the behavior of the overlap with change ofv1 in the case of
D50. In Fig. 3, we givev1 dependence of the overlap ca
culated from Eqs.~33!–~40! and the result of numerica
simulations with N54000 for the case witha50.02, a

FIG. 3. v1 dependence of the overlap obtained from the pres
analysis is plotted together with the results of numerical simulati
with N54000 for the case witha50.02,a50.7, D50. Since the-
oretical analysis is based on taking a time average of physical q
tities of interest, the results of simulation are displayed in terms
time-averaged quantitiesummu5u(1/N)S ij i

mzi u.
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50.7, andD50. Good agreement between the theory a
numerical simulations implies the validity of the prese
analysis.

As is expected, an entrainment indeed occurs in the c
of small v1(v1&0.5), where one has successful retriev
accompanying a large size of overlap. Even in the case
large v1(1.0&v1) successful retrieval can be realized wi
small size of overlap, since natural frequency ofaN oscilla-
tors remains 0.

To give a qualitative explanation for the occurrence o
window for breakdown of the retrieval states, we consid
the case witha50 for the moment. We can easily obtain th
values of order parametersm, q, and u as functions ofv1
~see Appendix D! as shown in Fig. 4. We see a phase tra
sition to occur atv1'0.7, andu is seen to increase asv1
approachesv1

c :u→1 asv1→v1
c , while q51 for v1,v1

c

owing to the entrainment.
Even whenaÞ0, such an enhancement ofu aroundv1

c

remains unchanged as can be seen in Fig. 4. Noting Eq.~39!
we can easily understand the noise variancear /25aq/(1
2u)2 may be enhanced accordingly in the interval 0.5&v1
&1.0, where retrieval states disappears.

In Fig. 5, we draw thev2a phase diagram to show th
behavior of the storage capacity as a function ofv1 . The
window observed in Fig. 3 turns to arise from the valley
ac(v1) curves.

B. Effect of white noise

Behaviors of synchronization in the networks of coupl
oscillators with white noise differ from those of the dete

FIG. 4. ~a! v1-dependences of the order parametersm, q, andu
obtained from Eqs.~1!, ~2!, and~3! are displayed in the case wit
a50.7 anda50. ~b! same as~a! for the case witha50.02. The
gap separating two types of retrieval states~the largev1 regimes
and smallv1 regimes! implies the disappearance of retrieval stat
d
t

se
l
of

r

-

f

ministic networks withD50. In the absence of white nois
(D50), one can in general divide the oscillators withv i
Þ0 into two groups of synchronized and desynchroniz
oscillators according to the criterion of whether the pha
velocity of an oscillation vanishes or not. Noting Eq.~36!
and the form of effective transfer function withD50 @Eq.
~10!# illustrated in Fig. 2, we find that desynchronized osc
lators do not contribute to the value of overlapm, though
they contribute to the value of other order parameters suc
q and u. This is because we are concerned with the ti
averaged behavior of the local fields, where the tim
averaged phase difference between the desynchronized o
lators with natural frequenciesv and2v should bep in the
absence of white noise@i.e., f (2v,h,h* )52 f (v,h,h* ) for
uhu,v]. In the case with white noise (DÞ0), however, the
phase of each oscillator withv iÞ0 evolves with a certain
non-zero time-averaged phase velocity, since the action
white noise prevents any oscillators from settling into fix
points. Hence, it becomes impossible to distinguish betw
the synchronized and desynchronized oscillators anym
Nevertheless a finite value of the overlap is realized beca
of the existence of the equilibrium probability distribution o
@0, 2p! that is achieved after a long time withz̄Þ0.

In Fig. 6 we display the behavior of the overlap as
function of the noise intensityD obtained by the theoretica
analysis and numerical simulations. As expected, the siz
the overlap decreases as the noise intensity increases
the system undergoes a discontinuous transition at a cri

.

FIG. 5. v12a phase diagram representing the behavior of st
age capacities for various values ofa in the case ofD50.

FIG. 6. D dependence of the overlapm obtained from the
present analysis is plotted together with the results of numer
simulations withN54000 in the case witha50.7, a50.01, v1

50.3.
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noise intensityDc, above which a disordered state withm
50 is realized. Good agreement between the two res
implies the validity of our treatment based on the time av
aged local fields together with the assumption that the TA
like equation also holds in the case with a distribution
natural frequencies.

In Fig. 7, we givev12a phase-diagram that represen
the storage capacity plotted as a function ofv1 for various
values ofD. In most of the region ofv1 , the storage capacity
ac decreases as the noise intensity increases. We see th
D smaller than a certain criticalD0 , ac(v1) exhibits non-
monotonic behavior with change inv1 , while for D
.D0 ,ac(v1) is monotonically decreasing withv1 . The oc-
currence of a window for the breakdown of the retriev
states with fixeda for D,D0 turns out to be attributed to th
appearance of a valley caused by the non-monotonic be
ior of the ac(v1) curve as in the case ofD50 ~Fig. 3!.

V. SUMMARY AND DISCUSSIONS

We have investigated properties of an associative mem
model of oscillator neural networks based on simple ph
oscillators, where the influence of white noise together w
a natural frequency distribution is considered in the case
an extensive number of stored patterns. In the presenc
white noise every oscillator as well as its local field und
goes fluctuating motions even in the stationary state aft
long time. To deal with such a situation we have taken
approach based on the concept of the TAP-like equation
approximately derive the TAP-like equation for the syste
without an energy function we have taken the time aver
for the fluctuating local field of each oscillator neuron
make it constant in time. On the basis of the time-avera
local field we have dealt with the single-body Fokker-Plan
equation to obtain the time averaged outputs of the osc
tors in the stationary state, from which we have evaluated
effective transfer function. The relation between the tim
averaged output and the local fields involving such a tran
function can be viewed as an analogue of the naive TAP-
equation without considering the so called Onsager reac
term. We have supposed the proper form of TAP-like eq
tion to be given by appropriately adjusting the Onsager
action term such that settingv i50 (i 51, . . . ,N) naturally
leads to the legitimate TAP equation, which we have o
tained from the evaluation of the Gibbs free energy. App
ing the SCSNA to this TAP-like equation, we have obtain

FIG. 7. Same as in Fig. 5 for various values ofD in the case of
a50.7.
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the macroscopic order parameter equations, based on w
the properties of associative memory of the network ha
been studied.

Assuming a discrete symmetric natural frequency dis
bution with three frequency components for the sake of s
plicity, we have presented the phase diagram showing
behavior of storage capacity as a function of the param
v1 representing the width of the natural frequency distrib
tion. In the case ofD50 the storage capacityac has been
found to exhibit non-monotonic behavior asv1 is varied and
to attain a minimum at a certainv1 . As a result of the
occurrence of the valley in thev12ac curve the breakdown
of the retrieval state with fixeda occurs for intermediate
values ofv1 . When noise is present such a behavior h
been found to be somewhat relaxed, and only for sm
values of the noise intensityD the phenomenon of the
breakdown of the retrieval state can be observed. Our a
lytical result has shown excellent agreement with the res
of numerical simulations.

Our results show that associative memory based on t
poral coding can be realized in the network of simple ph
oscillators even in the presence of not only a distribution
natural frequencies but also external white noise. The re
that temporal coding is robust against the existence of e
ronmental noise is remarkable. Memory retrieval occurs
such a way that the oscillators undergo synchronized m
tions with the phase differencef i2f j between any two of
the oscillatorsi and j setting into, for long times, the differ
enceu i

m2u j
m of the memory patternm. In our modelu i

m is
chosen from uniformly distributed random numbers on@0,
2p!. The resultant behavior, however, is qualitatively t
same as that for our previous work (D50) @44# on the spe-
cial case whereu i

m50 or p and henceJi j is given by the
well-known formJi j 5(1/N)(mj i

mj j
m with j i

m561. A char-
acteristic feature of memory retrieval accompanying s
chronization is that, in contrast to networks with fixed po
type attractors, each neuron exhibits oscillations in the lo
field or the membrane potential that are easily detected
other neurons in a certain network to determine whet
memory retrieval is successful or not. Also worth noting
the appearance of two types of retrieval states with respe
the degree of synchronization: a high degree of synchron
tion that occurs for smallv1 with overlapm large and a low
degree of synchronization that occurs for largev1 with m
small.

The fundamental assumption we have used in the pre
study is the existence of the TAP-like equations~16! and
~17! for our system together with the expression ofgTAP @Eq.
~43!#. In the case ofv i50 (i 51, . . . ,N) there occurs no
problem because the genuine TAP equation exists as
been shown. In this case, we have found thatgTAP @Eq. ~18!#
is exactly canceled out bygSCSNA, as in the case of the
network of AGS, to yieldgTOTAL50 as well as the orde
parameter equations that recover the ones by Cook@42#, who
analyzedQ-state spin model including the case withQ→`
for arbitrary temperatures by means of the replica symme
approximation.

In the case with distributed natural frequencies, to e
mate the form of the effective transfer function of the TA
like equation, we have replaced the time-dependent lo
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fieldshi in Eq. ~6! by their time-averaged ones, and assum
that the Onsager reaction term of the form:gTAPsi

52au/(12u)si appears in the effective local field as
result of fluctuation of local fields. This form of the Onsag

reaction term yieldsgTOTAL50, which leads tof̃ (v,h,h* )
5 f (v,h,h* ): The effective transfer function we have d
rived does not depend on the value ofgSCSNA. This is not the
case in more general stochastic networks. A more system
treatment of thegSCSNAterm in stochastic networks, which i
found to justify the present approach for our networks, w
be studied elsewhere.

Some special cases of the present model have also
investigated by several authors other than Cook. Are
et al. @41# have investigated the case witha50, where the
natural frequency distribution is assumed to obey a Gaus
distribution. The result of this case can also be recovered
the present analysis.

To our knowledge the case with distributed natural f
quencies anda.0 was first studied by Parket al. @52# for
different synaptic couplings by means of replica calculatio
based on the energy that is defined so as to satisfyḟ i
52dHPark/df i1h i . In our case, theHPark takes the form
HPark52 1

2 ( iÞ j Ji j cos(fi2fj2bij)2(ivifi . However, this
energy does not make any sense because the equilib
distribution exp(2HPark/D) does not satisfy the periodica
boundary conditionP($f i%)5P($f i12p%).

Aonishi et al. @53# studied the case withD50 and a
Gaussian distribution for natural frequencies by consider
that q51 holds in the set of SCSNA equations based o
different scheme from ours even in the presence of the gr
of the desynchronized oscillators.

Yamanaet al.also studied the deterministic oscillator ne
work (D50) with a discrete distribution of natural freque
cies that stores binary patterns by making an approxima
that the motions of the group of desynchronized oscillat
do not exert an influence on the behavior of the synchroni
oscillators. Discarding the effect of desynchronized osci
tors corresponds to considering the transfer function
takes the value zero inside the circle with radiusv ~see Fig.
2!. For a wide class of natural frequency distributions t
scheme seems to work to a good approximation in the c
with D50, because the contribution of the desynchroniz
oscillators to such order parameters asm, q, andu is small. It
is noted, however, that, in the case ofDÞ0, the phase of
every oscillator withv iÞ0 evolves with a certain non-zer
time-averaged velocity and hence one cannot distinguish
tween synchronized and desynchronized oscillators. Acc
ingly for stochastic networks withDÞ0 methods based o
neglecting the effect of the desynchronized oscillators w
not make sense and one has to deal with all of the oscilla
equally as in the present analysis.

Finally, we briefly discuss the relevance of our results
biologically related models of associative memory. Biolo
cally relevant models@31,32,54–57# should be based on suc
spiking neurons as the Hodgkin-Huxley type@54# and
integrate-and-fire type neurons@31,32,56,57#. A simple
integrate-and-fire neuron that is defined by one-dimensio
linear equation except for firing event can be described
terms of phase that is obtained by properly scaling the o
dimensional output variable. Synaptic couplings imp
d
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mented into spiking neural networks are often assumed
incorporate the so-called alpha function@56# or its variant
represented by the dynamics of a certain gating variab
@54,55#. So, major differences between the simple phase
cillator model we have dealt with on the basis of the diff
sive couplings among the oscillators and the spiking mo
will be the form of the synaptic couplings together with sym
metry of an individual oscillator with respect to rotation
the phase variable. While the present model is assume
take a sinusoidal phase interaction for simplicity, a spiki
model with a synaptic interaction based on the alpha func
takes the form of pulse like couplings@31,32,56,57#, which
will lead to considering higher harmonics in the phase int
action.

A spiking neural network model of associative memo
we previously studied using FitzHugh-Nagumo neurons
hibits a nearly comparable size of the storage capacity to
of the standard analog network with the transfer funct
F(h)5@sgn(h)11#/2 that is larger than the storage capac
of the present model@22#. It will then be of interest to ob-
serve the outcome of introducing higher harmonics in
phase interaction of the simple phase oscillator model.
expect the storage capacity of the phase oscillator networ
increase when the higher harmonics is taken into acco
Such an analysis is now under way.

The problem of investigating properties of neurons sy
chronizing the envelope of a burst of spikes is also of int
est, but is beyond the scope of the present paper, which a
at studying the effects of such heterogeneities as a na
frequency distribution and external noise on the robustn
of temporal coding in the oscillator network of associati
memory. We consider that taking not only phase but a
amplitude as variables for oscillatory neurons will provide
solvable model suitable for studying the case with such s
chronization in networks of bursting neurons, which is a
under way.
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APPENDIX A: DERIVATION OF THE TAP
EQUATIONS „16… AND „17… IN THE CASE

WITH v iÄ0 „ iÄ1, . . . ,N…

To obtain the TAP equation for the present model w
the energy function~2! we follow the method of Plefka@50#
and Nakanishi@51# used for the SK model and neural ne
works of Ising spins.

The Hamiltonian~2! with a complex-valued external field
Ri1 i I i included reads

H̃5aH2(
i

~Ri cosf i1I i sinf i !

52
a

2 (
iÞ j

ci j* zizj* 2(
i

~Ri cosf i1I i sinf i !, ~A1!

wherea is introduced for the analysis below. Applying Leg
endre transformation to the free energy corresponding to
HamiltonianH̃, one has



il
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G~a,$si%!52b21 ln Tr exp~2bH̃ !1(
i

~Rixi1I iyi !,

~A2!

where b51/D and si5xi1 iy i5^cosfi&a1i^sinfi&a
5^zi&a• ^¯&a denotes expectation with respect to the Ham
tonianH̃.
il
-

We perform a Taylor expansion with respect toa

G~a,$si%!5 (
n50

G~n!

n!
an, ~A3!

where G(n)5]nG/]anua50 . Noting Bi1 i I i5]G/]xi
1 i ]G/]yi , we rewrite Eq.~A2! in the form
G~a,$si%!52b21 ln Tr expH 2abH1b (
n50

(
i

an

n! S ]G~n!

]xi
cosf i1

]G~n!

]yi
sinf i D J 1 (

n50
(

i

an

n! S ]G~n!

]xi
xi1

]G~n!

]yi
yi D

52b21 ln Z1(
i

S ]G~0!

]xi
xi1

]G~0!

]yi
yi D 2b21 ln

1

Z
Tr expH b(

i
S ]G~0!

]xi
cosf i1

]G~0!

]yi
sinf i D J

3expH 2abH1b (
n51

(
i

an

n! S ]G~n!

]xi
cosf i1

]G~n!

]yi
sinf i D J

1 (
n51

(
i

an

n! S ]G~n!

]xi
xi1

]G~n!

]yi
yi D

5G~0!2b21 lnK expH 2abH1b (
n51

(
i

an

n! S ]G~n!

]xi
cosf i1

]G~n!

]yi
sinf i D J L

0

1 (
n51

(
i

an

n! S ]G~n!

]xi
xi1

]G~n!

]yi
yi D

5G~0!2b21 lnK expH 2abH1b (
n51

an

n!
AnJ L

0

~A4!
o

with

An5
1

2 (
i

$~]G~n!/]xi1 i ]G~n!/]yi !~zi2si !*

1~]G~n!/]xi1 i .]~n!/]yi !* ~zi2si !%, ~A5!

where Z5Tr exp$b(i@(]G(0)/]xi) cosfi 1(]G(0)/]yi) sinfi#%
and ^¯&0 denotes expectation with respect to the Ham
tonianH̃ with a50.

Noting si5^zi&a5^zi&0 , from Eq. ~A4!, it follows

G~1!5^H&052
1

2 (
iÞ j

ci j* sisj* . ~A6!

Then, from this equation and Eq.~A4!, one has

G~a,$si%!5G~0!1a^H&02b21 ln

3K expH abB1b (
n52

an

n!
AnJ L

0

, ~A7!
-

where

B5
1

2 (
iÞ j

ci j* ~zi2si !~zj2sj !* . ~A8!

Evaluating G(a,$si%) by expanding this equation upt
third order ina yields

G~a,$si%!5G~0!1^H&0a2
b

2
^B2&0a2

2
b2

6
^B3&0a31O~a4!, ~A9!

where it is noted that̂ B&05^An&05^BAn&050 for every
integer n>1. Then, noting^zi2si&05^(zi2si)* &050, we
have
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G~a,$si%!5G~0!1F2
1

2 (
iÞ j

ci j* sisj* Ga1F2
b

16(
iÞ j

$Ei~2,0!Ej~0,2!ci j*
21Ei~0,2!Ej~2,0!cji*

212Ei~1,1!Ej~1,1!ci j* cji* %Ga2

1F2
b2

96(
iÞ j

$Ei~3,0!Ej~0,3!ci j*
31Ei~0,3!Ej~3,0!cji*

313Ei~2,1!Ej~1,2!ci j*
2cji* 13Ei~1,2!Ej~2,1!ci j* cji*

2%

2
b2

48 (
~ i jk !

$Ei~2,0!Ej~1,1!Ek~0,2!ci j* cik* cjk* 1Ei~1,1!Ej~2,0!Ek~0,2!cik* cji* cjk* 1Ei~1,1!Ej~1,1!Ek~1,1!ci j* cjk* cki*

1Ei~0,2!Ej~2,0!Ek~1,1!cji* cjk* cki* 1Ei~2,0!Ej~0,2!Ek~1,1!ci j* cik* ck j* 1Ei~1,1!Ej~1,1!Ek~1,1!cik* cji* ck j*

1Ei~1,1!Ej~0,2!Ek~2,0!ci j* cki* ck j* 1Ei~0,2!Ej~1,1!Ek~2,0!cji* cki* ck j* %Ga31O~a4!, ~A10!
xe

s

on
s
ll

-

where Ei(n,m)5^(zi2si)
n(zi* 2si* )m&0 , and ~ijk! denotes

all combination to be taken so that either two of the inde
do not coincide@note that~ij ! implies iÞ j ]. Then substitut-
ing Eq. ~A3! into Eq. ~A10! yields, in the limitN→`,

G~a,$si%!5G~0!2
a

2 (
iÞ j

ci j* sisj* 2
aNb~12q!2

8
a2

2
aNb2~12q!3

24
a31O~a4!, ~A11!

where q5(1/N)( i usi u2. Note that all the relevant term
higher than the term of first order ina under the limitN
→` comes from the following in Eq.~10!

2
anbn21

2nn (
~ i 1i 2 ...i n!

Ei 1
~1,1!Ei 2

~1,1!¯Ei n
~1,1!

3ci 1i 2
* ci 2i 3

* ¯ci ni 1
* . ~A12!

Since every higher order term than the first order one c
tains2anbn21^Bn&0 /n!, one may expect that it yields term
of the form of Eq.~12!. Summarizing those terms we wi
have

G~a,$si%!5G~0!2
a

2 (
iÞ j

ci j* sisj* 2aN(
n52

bn21

2nn
~12q!nan.

~A13!

Then, noting]q/]xi1 i ]q/]yi52si /N, we obtain

Ri1 i I i5
]G

]xi
1 i

]G

]yi
5

]G~0!

]xi
1 i

]G~0!

]yi

2a(
j Þ i

ci j sj2gTAPsi , ~A14!

wheregTAP52aa$ab(12q)/2%/$12ab(12q)/2%.
In the case ofa50,H̃ becomes

H̃52(
i

$~]G~0!/]xi !cosf i1~]G~0!/]yi !sinf i%.

~A15!

Thus, we have
s

-

si5^cosf i&01 i ^sinf i&0

5
I 1@bA~]G~0!/]xi !

21~]G~0!/]yi !
2#

I 0@bA~]G~0!/]xi !
21~]G~0!/]yi !

2#

3
]G~0!/]xi1 i ]G~0!/]yi

A~]G~0!/]xi !
21~]G~0!/]yi !

2

5 f @0,]G~0!/]xi1 i ]G~0!/]yi ,~]G~0!/]xi1 i ]G~0!/]yi !* #,

~A16!

where I k(r )5(1/A2p)*0
2p exp(r cosw)coskw dw, and

f (0,h,h* ) is just the effective transfer function we intro
duced in Eqs.~9!, ~14!, and~15!.

Considering the case witha51, from Eqs.~14! and ~16!
we finally obtain the TAP equation:

si5 f ~0,hi
TAP ,hi

TAP* !, ~A17!

hi
TAP5(

j Þ i
ci j sj1gTAPsi1Ri1 i I i , ~A18!

gTAP52a
b~12q!/2

12b~12q!/2
. ~A19!

APPENDIX B: DERIVATION OF EQ. „27…

To derive Eq.~27!, we substitute Eq.~20! into Eq.~22! to
obtain

hi5m11
1

N
(
m.1

(
j Þ i

j i
mj j

m* sj
m1gTAPsi

1
l

N2 (
m.1

(
j Þ i

(
kÞ j

j i
mj j

m* j j
m ] f̃

]h̃
U

~ h̃
j
m ,h̃

j
m* !

jk
m* sk

m

1
l*

N2 (
m.1

(
j Þ i

(
kÞ j

j i
mj j

m* j j
m*

] f̃

]h̃*
U

~ h̃
j
m ,h̃

j
m* !

jk
msk

m* .

~B1!
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Utilizing the relationsj j
mj j

m* 51, (1/N)( ij i
m50, and so on,

the fourth term of Eq.~B1! becomes, in the limitN→`,

l

N2 (
m.1

(
j Þ i

(
kÞ j

j i
mj j

m* j j
m] f̃

]h̃
U

~ h̃
j
m ,h̃

j
m* !

jk
m* sk

m

5
l

N
(
m.1

(
k

j i
mjk

m* sk
m 1

N
(
j Þ1

] f̃

]h̃
U

~ h̃
j
m ,h̃

j
m* !

2
l

N
(
m.1

j i
m 1

N
(
j Þ i

] f̃

]h̃
U

~ h̃
j
m ,h̃

j
m* !

j j
m* sj

m

5
ul

N
(
m.1

(
kÞ i

j i
mjk

m* sk
m1aulsi . ~B2!

Following the almost same scheme the fifth term of the ri
hand side of Eq.~B1! is shown to vanish in the limitN
→`. Substituting Eq.~22! into the left-hand side of Eq.~B1!
we obtain Eq.~27!.

APPENDIX C: DERIVATION OF EQS. „38… AND „39…

The Eq.~38! is straightforwardly derived from the defin
tion of u by noting ^^] f̃ /]h̃&&5^^1/2@] f̃ /]$Re(h̃)%
2i] f̃/]$Im(h̃)%#&& and performing integration by parts. T
show Eq.~39! from Eq. ~32! it is suffice to prove thatu is
real.

To showu is real, note the rotationary symmetry structu
of the form of transfer function~9! as is illustrated in Fig. 2.
Because of this symmetry structure off (v,h̄,h̄* ) we also
have f̃ @v,reiu,(reiu)* #5eiu f̃ (v,r ,r ) in the presence o
nonzero complexgTOTAL. One also immediately finds
f (v,r ,r )5 f (2v,r ,r )* and f̃ (v,r ,r )5 f̃ (2v,r ,r )* . Then
it follows that f̃ @v,reiu,(reiu)* #5 f̃ @2v,(reiu)* ,reiu#* and
(x2 iy) f̃ (v,h̃,h̃* )5$(x1 iy) f̃ (2v,h̃* ,h̃)%* . On the other
hand, notingg(v)5g(2v) and changing the variables fo
integration, we have, from Eq.~38!,
.

s.
t

Aaru5^^~x1 iy ! f̃ ~2v,h̃* ,h̃!&&. ~C1!

Accordingly, we have

Aaru5^^$~x2 iy ! f̃ ~v,h̃,h̃* !%* &&5Aaru ~C2!

to conclude thatu is real.

APPENDIX D: DERIVATION OF THE MACROSCOPIC
ORDER PARAMETER EQUATIONS FOR THE

CASE WITH DÄ0 AND aÄ0

In the case withD50 anda50, substituting Eq.~10! into
Eq. ~21!, we have

m5H a, 0,m<v1

a1~12a!
Am22v1

2

m
, v1,m.

~D1!

Using Eq.~10! we also obtain, from Eqs.~37! and ~39!, q
andu as a function ofm:

q5H a1~12a!S v12Av1
22m2

m
D 2

, 0,m<v1

1, v1,m

,

~D2!

u55
a

2m
, 0,m<v1

a

2m
1

12a

2Am22v1
2

, v1,m,

~D3!

where we have notedu5^^Re$]f/]h%&&5^^Re$(e2iu /2)
3(] f /]r 2( i /r )] f /]u)%&&, that is obtained by representin
the local field with the polar coordinate, i.e.h5reiu.

As v1 approaches the point of phase transition from b
low, u increases as is shown in Fig. 4. At the phase transi
point wherem5a1(12a)Am22v1

2/m and (]/]m)$a1(1
2a)Am22v1

2/m%51, one hasu51.
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